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A technique for constructing the aerosol size spectrum correlation matrix based on the 
use of a number of analytic models of the stratospheric aerosol distribution is proposed. The 
feasibility of using such matrix eigenvectors as a model basis for the optical characteristics 
of a polydisperse aerosol is discussed, using the aerosol extinction coefficients as an example. 

 
 

1. In order to solve the ill-posed inverse problems 
of atmospheric aerosol remote sensing, one has to state 
in some form the a priori information on the 
sought-after particle size spectrum, so that the re-
trieved function will be stable to random errors. 

It is most natural to use statistical data for this 
purpose, since they reflect both the internal variability 
and the relation between the particle size intervals 
within the spectrum represented in the form of a cor-
relation matrix of the particle size distribution function, 
the latter given as a histogram vs particle size. Using 
such a correlation matrix is also of interest in calcula-
tions of the reflected and scattered radiations, since this 
matrix makes it possible to estimate the variability of the 
natural aerosol extinction and scattering.1 In the in-
terpretation of lidar measurements the availability of the 
correlation matrix makes it possible to construct rela-
tions between the aerosol extinction and backscattering 
coefficients. The possibility of using the eigenvectors of 
the correlation matrix as a basis for approximating the 
aerosol size distribution functions should also be noted. 
Such an approach may serve as àn engineering calcula-
tional technique for calculating the optical characteris-
tics of polydisperse aerosols. 

In this connection a heuristic approach is sug-
gested below for constructing the correlation of the 
aerosol size distribution function based on certain 
analytic models of the stratospheric aerosol distribu-
tion.5 Result illustrating the possibilities of its ap-
plication to the solution of several of the 
above-mentioned problems are presented. 

2. Let us consider a technique for constructing 
the model correlation matrix. We introduce the fol-
lowing abbreviated notation for the model distribution 
function borrowed from Ref. 5: fs(r, qt , pk), where 
the indices have the following meaning: s prescribes 
the analytic form of the distribution function; r is the 
particle radius; qt are the parameters estimated at some 
point; t is their number depending on s; pk are the 
parameters prescribed base chosen measurement in-
terval; k is the number of sub-intervals, into which the 

entire interval of variability for pk is subdivided. The 
values of fs(r, qt, pk) employed in the computations 
are listed in Table I. It also lists the values of the 
parameter X  which characterizes the ratio of the 
number of particles whose radius exceeds 0.15 m to 
the number of those whose radius exceeds 0.25 m 
(N0.15/N0.25) and  is the standard deviation of this 
ratio, which is assumed to be a normally distributed 
random variable. 

Computation of the distribution functions for all 
possible combinations of the above parameters makes 
it possible to form an a-priori model ensemble con-
sisting, for example, of 900 model distributions, so 
that the ensemble average may then be obtained: 
 

 (1) 
 
where L = 900, T(s) is the number of parameters 
represented by their point estimates for the various 
distribution function (see Table I), and w(s, t, k) is 
weighting factor. If s = 4 we treat qt as a composite 
parameter  , .t tq q   

The i, j-th element of the correlation matrix of the 
particle size distribution function is computed from the 
thus constructed model ensemble as follows: 
 

 
 

 (2) 
 
where w(s, t, k) is the weighting factor. 

The values of w(s, t, k) where determined 
assuming that for every s the maximum weight 
should be ascribed to those distribution realizations 
which are close to the respective averages given in 
Table I in their N0.15/N0.25 ratios. Taking into 
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account the above assumption of a normal distri-
bution for this ratio we may compute w(s, t, k) from 
the following expression 
 

 (3) 
 

where C is a normalizing factor and Xs,t,k is the com-
puted value of the ratio N0.15/N0.25 for the respective 
realization of the size distribution function. 

The proposed approach was applied to the spectral 
range from 1 = 0.01 m to 2 = 2 m, with the whole 
range uniformly divided into 30 sub-range over ln. 
 

TABLE I. Model distribution functions fs(r, qt, pk) and parameters used to calculate the correlation matrix. 
 

 
 

3. Let us now analyze the properties of the 
constructed model correlation matrix. Figure 1a 

gives, in relative units  11 1/ ,K f  the diagonal of 

the matrix K, demonstrating the variability of the 
distribution function in the a-priori model ensemble  

for different particle size ranges. Note that such a 
variability attains its maximum at the boundaries of the 
considered range, reaching, in the same relative units, 
about 300% for   2 m and about 150% for 
  0.01 m. The values of the variability obtain for 
r  0.1 m (approximately 42%). 
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FIG. 1. The diagonal of the correlation matrix of the aerosol size distribution function (a) and the 
three first eigenvectors of the same correlation matrix (b).  

 
TABLE II. Eigenvectors, eigenvalues, and the ensemble-average size distribution function 

 

 
 
Note: 7.10–2  7.10  10–2. 
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Let us consider now the eigenvectors and ei-
genvalues of the constructed correlation matrix. The 
calculations demonstrate that such eigenvalues de-
crease quite rapidly: the sixth eigenvalue is two orders 
of magnitude less than the first one 1 = 42.73), and 
the eighth is another order of magnitude less. This 
result points to the possibility of employing a basis of 
the first six to eight eigenvectors to describe the 
complete a-priori model particle ensemble. Such a 
basis is referred to below as the "model" basis. Fig-
ure 1b gives the trends of the first three eigenvectors 
(1 = 42.73, 2 = 18.88, 3 = 4.93) to illustrate the 
situation, and Table II lists the first eight eigenvectors 
and the corresponding eigenvalues, which reproduce 
the model correlation matrix with acceptable accu-
racy. The ensemble-average distribution function 

1( )f r  (1) is also shown. 
The approximation capabilities of the constructed 

model basis were studied for both "adequate" dis-
tribution function (i.e., those entering the model 
ensemble) and inadequate ones. 

As an example of an adequate distribution (s = 3 
and 4, Table I), we considered the log-normal and 
gamma distributions, their parameter values corre-
sponding to the "cleanest possible," "background," and 

"turbid" stratosphere. The "inadequate" functions 
were represented by bimodal log-normal distribution, 
with their second mode occupying different positions: 
 

 (4) 
 

Such distribution function can be found in marine 
tropospheric aerosols.3 

Figures 2a, b, c, d, e, and f plot the corre-
sponding distribution functions and the results of their 
approximation in the model basis. These figures show 
that the constructed model basis approximates quite 
well both the adequate and the tested inadequate 
distribution. Larger approximation errors are found 
only in the tails of the single-mode distribution whose 
modal radii He at the boundaries of the intervals 
shown in Table I. It should be noted, however, that 
the values of the functions themselves in these tails are 
down by almost two orders magnitude in comparison 
with the maxima. Therefore this approximation errors 
should not be expected to play any significant role in 
the overall representation. 

 

 
 

FIG. 2. Examples of approximations of various distribution functions in the model basis: the solid 
line is the “true” distribution; dashed line is the model approximation; a) s = 2 (see Table I), the 
parameters: rm = 0.263 m, g = 2; b) s = 2, rm = 0.011 m, g = 2; c) s = 4,  = 1,  = 1, 
b = 4.079; d) s = 4,  = 1,  = 1, b = 32.119; e) bimodal distribution (see Eg. (4)) of g = 2, 
C1 = 0.9, C2 = 0.1, 

1mr  = 0.04 m, 
2mr  = 0.3 m; f) bimodal distribution of g = 2, C1 = 0. 9, 

C2 = 0.1, 
1mr  = 0.04 m, 

2mr  = 0.6 m. 
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FIG. 3. Errors in the computed value of the extinction coefficient vs the coefficient itself. 
 

4. Let us now assess the feasibility of using the 
constructed model basis to compute the optical 
characteristics of polydisperse aerosols, taking as our 
example their extinction coefficients. Taking into 
account the known relation (Ref. 2), we may use the 
following expression to compute such an aerosol ex-
tinction coefficient: 
 

 (5) 
 

where b1 are the expansion coefficients for the given 
function in the modal basis and a1() is given by the 
expression 
 

 
 

 
 

where Qex(r, m, ) is the extinction efficiency factor 
for a particle of radius rand refractive index m at 
wavelength ; 1(r) are the model basis functions: 
b0 = 1, 0(r) = 1. 

Thus if we compute the coefficients a1() for the 
given set of wavelengths , then obtaining the optical 
characteristics for a given refractive index does not 
require any additional Mie computations and is be 
reduced to computing the sum (5). Note that the 
described approach to computing the optical charac-
teristics is close to the spectrozonal technique sug-
gested in Ref. 4. However, in our case a more detailed 
representations of the distribution function is possible. 

The accuracy of the approximation (5) in describing 
the extinction coefficients was tested for distribution 
function both adequate and inadequate to the model 
a-priori ensemble. The extinction coefficients were 
calculated at three wavelengths: 1 = 0.3, 2 = 0.6, 
1.0 m for the complex index of refraction 

m = 1.44–0.01. 
Figure 3 shows the absolute calculational errors 

for the extinction coefficient ,t
ex ex      where 

t
ex  is the extinction coefficient obtained by direct 

integration of the given distribution function, and ex 
is that same coefficient obtained using formula (5). 
The absolute errors  are presented versus ex, for à 
particle number density of 100 cm–3. 

We see that (ex) illustrates the effect that the 
approximation errors in the particle size distribution 
function have upon the computed extinction coeffi-
cient. They are plotted vs the distribution modal 
radius. For bimodal distributions, this is essentially 
the dependence on the relative position of the two 
modes. Analyzing the data shown in Fig. 3 we see that 
the dependence of  on ex is close to linear, within the 
chosen interval of variability of ex, so that for the 
maximum values of ex  0.4 km–1 it does not exceed 
roughly 0.004 km–1. 

In conclusion we summarize the principal results 
of the described study. 

1. A model correlation matrix has been con-
structed for the aerosol size distribution functions. 

2. The approximational capabilities of the model 
basis, constructed for the first eight eigenvectors of 
this matrix, have been estimated. It has been shown 
that it approximates quite well both the functions 
adequate to the initial ensemble, and certain inade-
quate distributions. 

3. The model basis has been shown to be usable 
for comparing aerosol extinction coefficients. The 
maximum computational errors do not exceed 
0.004 km–1 for the considered distribution functions 
at a particle number density of 100 cm–3. 
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