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The limits on the parameters of an adaptive telescope with a Hartmann sensor and the 
conditions under which an extended exoatmospheric object can be observed and it is 
potentially possible to obtain a diffraction image are analyzed. 

 
 

In our preceding papers1–3 we analyzed one of the 
simplest, from the standpoint of practical implemen-
tation, approaches to the solution of the problem of 
viewing through the earth’s atmosphere — speckle 
interferometry. This method, being based on succes-
sive recording and simultaneous statistical analysis of 
a series of short-exposure images, using large modern 
telescopes in the visible wavelength range, makes it 
possible to achieve a resolution almost at the dif-
fraction limit. This, however, requires several tens to 
hundreds of thousands of initial images with a constant 
aspect angle of the object. This limits the range of 
priority application of speckle interferometry pri-
marily to the problem of observing objects in high, 
including geostationary, orbits. At the same time, the 
problem of the formation of a diffraction image of a 
nonstationary object is a very important one. One 
effective method for solving this problem is to use 
adaptive telescopes. Appreciable progress has been 
made in the last few years in the development of the 
elemental base for such telescopes.4 
 

 
 

FIG. 1. Adaptive telescope with the Hartman 
sensor: 1) the Hartman sensor; 2) the computer; 3) 
the atmosphere; 4) the wavefront corrector; 5) the 
detector. 

 

We shall estimate the potential efficiency of an 
adaptive optical system, based on Hartmann’s method, 
for extended exoatmospheric objects (Figs. 1 and 2).5 
Hartmann’s method (the phase distortions produced in 
the phase front by turbulence are determined from the 
displacements of images of the object at the foci of the 
subapertures covering uniformly the aperture of the 
telescope) is the most promising method for passive 
observation of such objects. Indeed, in Hartmann’s 
method there are no fundamental limits on the size of 
the object and the width of the spectrum of the re-

ceived radiation — such restrictions appear only as a 
result of the finite size of the region of isoplanatism 
and turbulence-induced dispersion effects in. the 
atmosphere.6 This method has certain advantages in 
implementation over other methods. 
 

 
 

FIG. 2. The Hartman sensor: 1) the atmosphere; 
2) the set of subapertures; 3) the set of coordinate 
detectors. 

 

We emphasize that we shall be talking about the 
potential accuracy and its estimation, since only the 
most fundamental aspects will be taken into account 
and a number of assumptions will be made — Kol-
mogorov turbulence; circular aperture; hypothesis of 
"frozen-in" turbulence; layered atmosphere with re-
spect to wind directions; finite number of subapertures 
covering the aperture with some density; quantum 
noise of detectors in the Hartmann sensor (other noises 
are ignored); and, finite image recording time of the 
sensor; errors in viewing the object as well as some 
mathematical assumptions, which, in particular, make 
it possible to leave unspecified the form of the 
subapertures, their arrangement, etc. The amplitude 
fluctuations of the field on the aperture, the back-
ground, the thermal noise of the detectors, the response 
of the apparatus implementing the algorithm recon-
structing the phase front from its local tilts, the quality 
of the operation of different wavefront correctors, and 
possibly some other aspects, which could be of great but 
not fundamental importance, are ignored. 

It should be noted that in this paper we shall 
employ the polynomial representation of the wavefront 
on the aperture, namely, an expansion in orthogonal 
circular Zernike polynomials ( ) ( / ),j j

j

r C Z r R    

where R is the radius of the aperture. This is one of 
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many equivalent representations, but because the 
polynomials are close to the eigenfunctions of the 
Karhunen-Loéve integral equation whose kernel has 
the form of the correlation function of the phase, it 
makes it possible to relate approximately the finite 
number of subapertures, through the corresponding 
number of polynomials calculated for them, with the 
accuracy, determined by this number, of the deter-
mination of the wavefront. 

The ultimate purpose of the adaptive optical 
system in this case is to obtain an image that is close to 
the diffraction image. As is well known, this is realized 
when the residual rms error in the phase is not worse 
than /4. This will be the starting point for the further 
analysis. 

Based on the results of Refs. 7–9, we shall write 
down the following expression for the rms error in the 
estimate of the atmospheric phase, taking into account 
the finite number of subapertures, the errors in the 
measurements of the local tilts of the wavefront on the 
subapertures, and the errors in averaging with a finite 
measurement time: 
 

 (1) 
 

This formula includes the following: 
— the error in representing the wavefront on the 

aperture with a finite number J of Zernike polynomials 
 

 (2) 
 

where 0
jC  are the coefficients in the polynomial ex-

pansion;7 r0 is Fried’s correlation radius of atmospheric 
distortions; 

— the phase estimation error owing to the in-
accuracy in the measurement of the tilts 
 

 (3) 
 

A is a matrix, whose elements are the average, over 
the ith subaperture, tilts of the first surface, de-
scribed by the jth Zernike polynomial;8  is the 
accuracy with which the local tilts of the phase front 
on the subapertures are measured; and, Rc is the 
correlation matrix of the coefficients in the poly-
nomial expansion; and, 

— the error in representing the wavefront using 
polynomials whose coefficients are averaged over the 
time t (Ref. 9) 
 

 (4) 
 

where T
jC  are constant coefficients, calculated in 

Ref. 9; 2v  is the squared velocity of turbulent 

nonuniformities averaged over the vertical distribution 
of the transverse wind velocity and atmospheric 
turbulence (the formula (4) was derived under the 

assumption that 2 2v vn  using the hypothesis that 

the turbulence is frozen-in, for polynomials whose 
radial part is of the order 
 

 
 

We shall now compare the terms (2)–(4) in the 
formula (1). 

From the approximate expression given in Ref. 7 
for the residual rms error of the phase with compensation 
of J aberrations it is easy to determine the required 
number of ideally reconstructed expansion coefficients, 
for which a given accuracy j [rad] is obtained: 
 

 (5) 
 

It is obvious that the number of subapertures N must 
not be less than J. Thus the maximum size of a 
subaperture, corresponding to the minimum number of 
subapertures required, is virtually independent of the 
size of the aperture and is determined by Fried’s 
parameter r0. Suppose that for circular subapertures, 
filling the area of an aperture with coefficient , 
0 <  <1: 
 

 (6) 
 

For example, for  = 0.3 and accuracy 
j = /10 dmax > 0.64 r0. 

To estimate, with the help of the formula (3), the 
error in the reconstruction of the wavefront owing to 
the uncertainty in the measurement of the local tilts, 
we shall use the approximate expressions given in 
Ref. 8 for the elements of the matrix A and, in ad-
dition, using the sparseness and nearly diagonal form 
of the matrices ATA and Rc, we shall include in Eq. (3) 
only their diagonal elements. Then 
 

 (7) 
 

where j = (n + 1)(n2 + n – m2), where n and m are 
the orders of the radial and angular parts of the jth 
polynomial. Here the first term takes into account the 
uncertainty of the measurement itself and the second 
term takes into account the magnitude of the aberra-
tions themselves. 

The error, owing is the quantum noise, in the 
determination of the tilt of the wavefront, matched 
with the image by the detector, within the subaperture 
is equal to10 
 

 (8) 
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where  is the angular radius of the region of the image 

containing 90% of the energy of the received radiation, 

W is the average number of photoelectrons per unit 

area of the subaperture, and S is the area of the de-

tector with four quandrants 2 is  times larger.) If the 

object is not resolved by a subaperture  > 2/d; 

otherwise it can be assumed that 2 > , where  is 

the solid angle covered by the object. 
It can be shown that as j increases the second term 

in Eq. (7) increases more rapidly than the first term, 
i.e., the estimate of the higher order aberrations, 
compared with their rms magnitude, is less accurate. 
For the aberration of highest order (with index 
j = J(n, m) — see the formula (5)) the ratio of the 
error in the estimation of the aberration to the rms value, 
depending on the order of the angular part m, is equal to 
 

 
 

 (9) 
 

 
 

In the case when the ratios in Eq. (9) are small, 
2
  is determined primarily by the errors in the 

measurement of the tilts and is limited by the quantity 
 

 
 

 (10) 
 
in addition, . increases from 0.25 up to  1 as J 
changes from 1 to . The conditions that the ratio (9) 
and the variance (10) be small are virtually equivalent, 
i.e., when the last aberration, taken into account based 
on Eq. (5), is estimated quite accurately compared 
with its rms value, the residual error owing to the 
uncertainty in the measurement of the wavefront tilts 
will be small compared with the wavelength. 

As an example, we shall examine the standard 
situation: radiation from object, illuminated by the 
sun (P = 1.6  1026 photons/m3  s  sr), strikes the 
Hartmann system with a fill factor of 0.3 and a 
transmittance of 0.3, and is recorded at the wavelength 
0.5 m in a 0.03 m band over a time of 30 ms 
matched with a detector with a quantum efficiency 
0.2. If the number of aberrations determined ideally 
corresponds to j = 210, then to the ratio (9) of 
order 0.1 with m = n (the relative error in the de-
termination of aberrations of higher orders is small) 
there corresponds the ratio of the solid angle , 

covered by the object, to the angular area 2 of the 
image of the object made by the subaperture equal to 
 2  10–3. At the same time, the condition 
  2/10. Thus for a subaperture 5 cm in diameter 
the minimum admissible value of  for the observed 
object is of the order of 0.1 (angular seconds)2. 

Rewriting the condition (10) in the form 
 

 (11) 
 

it is not difficult to see that it is almost equal to the 
error, averaged over the subaperture, in the meas-
urement of the local wavefront tilt; in addition, the 

factor 1

1

J

j
j





  increases monotonically from 0.25 (only 

the tilt on one axis is taken into account) to  1 (all 
aberrations are taken into account) as the size of the 
aperture array increases. This result is in agreement 
with the results of a different approach, used in 
Refs. 11 and 12, where the wavefront is reconstructed 
from a collection of phase differences at neighboring 
sites of the array. 

It is also interesting to find the accuracy with 
which the local tilts * must be measured in order to 
obtain fixed values of  and j. From the formulas (5) 
and (10) we find that for the minimum number of 
subapertures admissible for a given aperture and J p 1 
 

 (12) 
 

Thus for  = j = 2/10 we find * > /(6r0). This 
result has a simple meaning. If a subaperture had the 
maximum possible diameter for achieving j = 2/10 
(according to Eq. (6), dmax > 1.2r0 for  = 1), then 
the admissible error in determining the phase at the 
edges of the subaperture would be /10; then, in ac-
cordance with the relation (12), the value of  would 
also correspond to the accuracy /10. It Is easy to see 
that for  = 0.3, i.e., dmax > 0.64r0, * = /6r0 is 
reached when the position of the center of the 
Hartmann image is measured with an accuracy of not 
less than 1/10 of its diffraction radius /d. 

It is obvious that the value of  (and ) will be 
affected by the error .in tracking the object with a 
telescope. In order that the motion of the object not 
result in an increase of , the tracking error with respect 
to the angular velocity  must satisfy the condition 
 

 (13) 
 

where T is the time within which the Hartmann images 
are recorded. In the preceding case, for the minimum 
number of subapertures for a given aperture, 
 = j = 2/10,  = 0.5 m, r0 = 5 cm and 
T = 3 ms  must be less than one angular minute/sec. 
From practice it is well known, however, that the  
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tracking error with respect to the velocity with 
 = 1  2 deg/s falls at the level of the character-
teristic vibrations of the drive and is equal to several 
angular seconds/sec. 

Characteristically there is no fundamental need 
here for additional stabilization of the diffraction 
image formed by the adaptive telescope. Its position 
must be stabilized by the adaptive corrector itself. 

Of course, there is a limit on the velocity of the 
object. The object should not leave the zone of iso-
planatism while the Hartmann image is being re-
corded, the phase distribution is reconstructed, the 
correction is made, and the image is recorded. For 
example, if these operations are performed within 6 ms 
and the region of isoplanatism has a size of two angular 
seconds, the angular velocity of the object must not 
exceed 0.1 deg/s. If the velocity exceeds this value, 
the admissible duration of the series of operations 
listed above decreases proportionately, and this cor-
respondingly increases the minimum angular area of 
the observed object. It should be noted that the 
maximum recording time can be increased by making 
an optimal forecast of the wavefront based on several 
preceding measurements.13 The width of the Spectrum 
when the signal is recorded in the Hartmann sensor can 
also be increased. For example, increasing the width of 
the spectrum from 0.03 to 0.35 m will make it pos-
sible to observe objects moving with velocities of up to 
1.2 deg/s, but atmospheric dispersion limit the 
maximum zenith angle to 45  60.6 

The last error is the time-averaging error T (4). 
According to Ref. 9, for the conditions under which 
the formula (4) was derived, 
 

 (14) 
 

Then using the approximation of Ref. 5 for 0
jC  for 

large values of j (j > 10), we obtain 
 

 (15) 
 

Correspondingly, using the relation (5) we obtain 
 

 (16) 
 

Thus the averaging error is virtually independent of the 
size of the aperture array. It depends slightly on the 
fixed maximum accuracy, and it is determined by the 
ratio of the distance traversed by air nonuniformities 
moving with the average velocity to Fried’s parameter 
r0. Setting T = j = 2/10, kv2j= 64 m2/s2, 
r0 = 5 cm, we easily find that the maximum time 
T > 6 ms. 

We recall that the error T, which we are studying 
here, is the rms error of the wavefront, approximated by 
a sum of polynomials and averaged over the observation 
time, from its temporal realization during this interval. 

In reality, however, over the time period determined in 
this manner (in other words, the time during which the 
atmosphere is "frozen"), not only is it necessary to 
construct the distribution of the wave front on the 
aperture, but the image obtained must also be corrected 
and recorded. 

Analysis showed that in the employed model the 
size of the adaptive telescope is not restricted. This can 
be explained as follows. The phenomena studied above, 
which affect the efficiency of the adaptive telescope, 
occur over a characteristic distance r0 (Fried’s parame-
ter), and the size of the subapertures is chosen to be 
proportional to this parameter. In this case the number 
of subapertures N increases as R2. The error in the 
estimate of the phase distribution on an aperture based 
on N virtually independent measurements decreases as 
1/ N   R–1 (this is seen especially clearly for the 
example of estimating the first aberration — the tilt of 
the wavefront, averaged over the aperture, based on N 
measured local slopes), i.e., with the same velocity as the 
diffraction limit of the aperture of the telescope /R. 

In conclusion, we shall briefly repeat the results 
of the foregoing analysis and draw some conclusions. 

1. The problem of obtaining close to diffrac-
tion-limited images of extended exoatmospheric ob-
jects is one of the problems in which adaptive optics 
could be useful. However there are some limitations, 
which are common to currently existing types of 
adaptive systems, on the maximum size and angular 
velocity of the object: the size of the zone of iso-
planatism (several angular seconds) and the velocity 
corresponding to the traversal of the zone of iso-
planatism over a time equal to the period of the ad-
aptation loop. In any case, the adaptation loop cannot 
be significantly longer than the time during which the 
turbulence is "frozen-in," equal approximately to 
r0/vwind (of the order of several milliseconds). 

2. The residual rms error /10, owing to the finite 
number N of independent measurements of the wave-
front on the aperture, is obtained for N  2.8(R/r0)

2. In 
the Hartmann sensor this value of N corresponds to the 
number of subapertures, and the maximum diameter of 
the subapertures, chosen based on the condition of 
mechanical strength, is equal to > 0.6  0.7 r0. 

3. Another component of the total error, deter-
mined by the finite accuracy of the measurements of the 
local tilts of the wavefront on the subapertures, also will 
not exceed /10, if this accuracy is not worse than 
0.1/ N  (/R)2 [rad]. Under typical conditions of 
observation the minimum angular size of the object is of 
the order of 0.1 (angular seconds).2 

When these conditions are satisfied, the potential 
resolution of an adaptive telescope becomes comparable 
to that of a diffraction telescope. 
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