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An algorithm for studying light fields in a cloudy atmosphere is constructed based on 
the small-angle modification of the method of spherical harmonics. The effect of the 
optical characteristics and the position of the cloud layer on the spatial and angular 
distribution of the light field is investigated. It is shown, based on a criterion introduced 
for evaluating the quality of image transmission, that as the distance between the object 
and the scattering layer increases, in spite of the fact that the optical transfer function 
of the medium degrades monotonically, the quality of image transmission can decrease or 
increase monotonically and can be of an extremal character. 

 
 

Investigations of cloud structures performed by 
optical methods essentially reduce to investigation of 
light fields in the atmosphere in the presence of clouds. 
Since cloud formations are spatially limited and have 
the form of optically dense scattering layers, effects 
that are inherent to radiation transfer in such media 
must be taken into account when investigating clouds: 
the multiple character of the scattering and the effect 
on radiation transfer of not only the optical parameters 
of the clouds but also the position of the cloud layer on 
the path. 

The linearity and invariance of optical systems 
makes it possible to use a linear-systems approach to 
describe radiation transfer in a scattering medium and 
to treat the medium as a separate element of the entire 
observation system, characterized by an optical 
transfer function (OTF), which is the Fourier trans-
form of the scattering function (FSF) of the medium. 

The sharply anisotropic character of the scat-
tering in a cloudy atmosphere makes the small-angle 
approximation most useful for investigation of light 
fields in such an atmosphere (for solving the radiation 
transfer equations (RTE)). The solution1 that is most 
widely employed, because the integral term of the RTE 
transforms into an integral of the convolution type, is 
valid only for extremely anisotropic scattering phase 
functions and very small viewing angles; this reduces 
sharply the applicability of the solution under at-
mospheric conditions. 

It is well known that in the theory of vision there 
are two possible approaches to determining the FSF.2 
According to the first approach the FSF is defined as 
the brightness produced in the direction of the optical 
axis by an elementary Lambertian radiator, and it is a 
function of the position of this source in the object 
plane. According to the second approach the FSF is the 
angular distribution of the brightness at the point of 
observation from an elementary Lambertian radiator 
located in the object plane on the optical axis. The 

first approach to this problem is exact while the second 
approach is approximate, but on the basis of the 
small-angle approximation, employed in this paper 
(i.e., for angular dimensions of the object less than 
5%), the second approach gives an error of less than 
10%.2 We note that within the limits of applicability 
of the small-angle approximation the light field 
produced by an elementary Lambertian radiator is 
equivalent to the light field produced by a point 
isotropic source. Based on the foregoing discussion, we 
shall choose for the FSF the angular distribution of the 
brightness of an isotropic point source. 

In this paper a small-angle modification of the 
method of spherical harmonics (SH) is employed to 
solve the RTE.3 The FSF is represented in the form of 
a series in Legendre polynomials 
 

 (1) 
 

where ˆ( , )L l r  is the brightness of the light field at the 

point r in the direction l̂  from an isotropic point 
source of light (the symbol  here and below denotes 
unit vectors); Ck(r) are the coefficients in the ex-
pansion in Legendre polynomials; Pk are Legendre 

polynomials; and, ˆ ˆ( , )l r   is the cosine of the angle 
at which the brightness field is viewed. 

The classical method of spherical harmonics leads 
to an infinite tridiagonal system of differential equa-
tions for the expansion coefficients Ck. To obtain 
acceptable accuracy several hundreds (and sometimes 
significantly more) terms must be retained in the 
expansion, i.e., the system must be solved with the 
same number of equations, which presents enormous 
difficulties even at the ' present level of development 
of computer technology. In the small-angle modifi-
cation (which we employed) of the spheri-
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cal-harmonics method the coefficients Ck can depend 
continuously and monotonically on the number k, and 
this makes it possible to reduce the infinite system to 
a single, second-order, partial differential equation, 
which can be solved analytically. The solution retains 
all the features of the exact solution of the RTE and 
neglects only the variance in the paths of the scattered 
photons and backscattering. This makes it possible to 
use the solution in a wide range of viewing angles and 
it also removes the sharp restrictions on the anisotropy 
of the scattering phase function of the medium. 
Comparisons with the Monte Carlo method showed 
that the solution gives an error of not more than 
10–15% for atmospheric scattering phase functions 
with viewing angles of 40°–50° (i.e., at the level of the 
variance of the Monte Carlo method itself). In addi-
tion, the series solution is more useful in engineering 
calculations than the solution in the form of an im-
proper integral.1 

In the situation studied in this paper the FSF of 
the medium is circularly symmetric, and the OTF can 
be found as a Hankel transformation of the FSF. Since 
Pk(cos) > J0(k) (as  — 0, and J0 is a Bessel 

function) and 
0 0
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  g  ( the case of sharp 

scattering phase functions the number of nonzero 
terms in the expansion (1) will be very large) is 
equivalent to the optical transfer function with k = , 
where  is the spatial frequency. In what follows, to 
simplify the presentation we shall call Ck the optical 
transfer function. We note that in the arguments given 
in this paragraph a clear relationship with the 
small-angle forms of Refs. 1 and 3. 

We shall study the transfer of an image of a 
bright object through an optically dense scattering 
layer (Fig. 1). We shall use the parameter t = d/D 
to characterize the position of the layer (following 
Refs. 5–7); here d is the distance from the object to 
the center of the layer and D is the distance from the 
object to the point of viewing (detector). 
 

 
 

FIG. 1. The computational scheme. 
 

For fixed D the OTF of the medium will be a 
function of t and according to Ref. 3 it will be de-
scribed by the formula 
 

 (2) 
 

where ( 1);q k k    is the thickness of the layer; 

 =  is the optical thickness of the layer;  and  are, 
respectively, the extinction coefficient and albedo of 
the single-scattering layer; and, g is the parameter in 
the Henyey-Greenstein function, which is used to 
approximate the scattering phase function of the layer 
(g is the average cosine of the angle of the phase 
function).8 

It is not difficult to derive from Eq. (2) an ex-
pression for the frequency-contrast characteristic 
(FCC) of the medium Fk: 
 

  
 

       (3) 

 
Analysis of the formulas (2) and (3) shows that 

the OTF and FCC of the medium decrease mono-
tonically as a function of k and become narrower as the 
parameter t increases (Fig. 2). This result agrees with 
the results obtained on the basis of a different form of 
the small-angle approximation as well as in the ex-
perimental works.9–12 The different behavior of the 
FCC obtained in Refs. 5–7 is explained by the fact 
that these works were concerned not with the FCC of 
the medium but rather the FCC of the system "medium 
+ bounded viewing angle of the detector," and this 
difference can be very significant. Figure 2 shows that 
the FCC of the medium has a "shelf," whose size can be 
easily found from Eq. (3): 
 

 
 
We note that Fk(t) becomes sharply narrower at t  0 
as t increases. 
 

 
 

FIG. 2. The dependence of the frequency-contrast 
characteristic of the medium on the parameter t. 
Solid lines: 1) t  0; 2) t > 0.1; 3) t  1. The 
dashed lines show the spectrum of the object ( for 
convenience, a rectangular spectrum is taken): 
1) large object; 2) small object; and 3) object of 
average size. 

 
The distribution of the brightness in the image is 

a convolution integral of the brightness distribution in 
the volume with the FSF of the medium (in the fre- 
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quency domain the convolution transforms into a 
product of spectra): 
 

 (4) 
 
where k  are the coefficients in the expansion of the 
brightness distribution in the object in Legendre 
polynomials ("Legendre spectrum" of the object). 

For convenience and to make it easier to construct 
a numerical algorithm we shall use for the test object 
a diffusely radiating disk of unit brightness. For a 
disk, i.e., for a rectangular distribution of the 
brightness over the object, k  have the form 
 

 (5) 
 
where  is one-half the angular size of the disk. 

The results of the calculation of the distribution 
of the brightness in the image of a disk for different 
positions of the layer on the object-detector path are 
presented in Fig. 3. 

The best example of the effect of the character of 
the stratification of the medium on the formation of 
the light field is the dependence of the image transfer 
quality (ITQ) of a cloudy atmosphere on the position 
of the cloudy layer on the observation path. Several 
different (sometimes contradictory) viewpoints re-
garding the character of the dependence of the ITQ on 
the position of the layer have been presented in the 
literature.5–7,9–13 This situation motivated this author 
to perform further investigations. 

In choosing a criterion for image transfer quality 
we shall not only use the OTF of the medium, but we 
shall also take into account the principle of operation 
of the image analyzer, which is based on comparing the 
image with the original14 
 

 (6) 
 

where max( ) / ;L L L   max( ) / ;L L L    where L() 

and L() are the angular distributions of the 
brightness in the object and the image, respectively; 
Lmax and maxL  are the maximum brightness of the 

object and image; and,  is the viewing angle of the 
detector. 

In the limit   4 according to Parseval’s 
theorem, the formula (6) assumes the form 
 

 (7) 
 

where max/ ,k ka a L  max/ ,k ka a L    ak is the spec-

trum of the object, and ka  is the spectrum of the 

image. The image quality criterion  introduced in this 
manner reflects both the transfer of contrast to the 

image (owing to the normalization of the brightnesses) 
and the transfer of the fine structure of the object. 
 

 
 

FIG. 3. The brightness distribution in the image of 
a disk at different positions: t = 0.001, 0.05, 0.1, 
0.2, and 0.99 (the curves 1–5, respectively). In the 
calculations  = 0.1;  = 5, D = 5;  = 0.05; 
g = 0.97; and,  = 1.0. The dependence  = (t) is 
shown in the upper righthand corner. 

 

We shall use the expressions (4) and (5) to de-
termine the quantities appearing in the formulas (6) and 
(7): ak = k  is the spectrum of the object and 

k k ka C    is the spectrum of the image; Lmax = 1; 

and, max (1, ).L L t   It is obvious that the brightness 
will be maximum at the center of the image (for 
 = 1). Then 
 

 
 

 (8) 
 

It is obvious that  is a function of the shape and 
size of the object, the optical characteristics of the 
scattering layer, and the parameter t. Investigations 
of the ITQ for a scattering layer using the formula 
(8) were performed on a computer for a wide range of 
values of the parameters enumerated above. De-
tectors with both unbounded and bounded fields of 
view were modeled (in the second case the integra-
tion was performed numerically). 

The calculations showed that, in both cases, as 
the distance between the object and the scattering 
layer increases (i.e., as the parameter t increases), in 
spite of the monotonic degradation of the FCC of the 
medium the ITQ can decrease or increase mono-
tonically and it can have an extremal character (i.e., 
the t-effect occurs). The form of the dependence (t) 
is determined by the ratio of the dimensions of the 
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object and the characteristic scale of the FSF of the 
medium as well as the ratio of the scattered and 
directly transmitted (attenuated according to 
Bouguer’s law) components in the image of the 
object. The dependence of the character of the be-
havior of (t) on the dimensions of the object is 
apparently of greatest interest. This dependence can 
be qualitatively explained as follows. 

If the size of the object is significantly greater 

 than the characteristic scale of the FSF of the 
medium (the spectrum of such an object will be 
significantly narrower than the FCC of the medium 
— see Fig. 2), then as t increases the spectrum of the 
image of the object will differ increasingly more 
strongly from the spectrum of the original, and the 
ITQ will decrease monotonically ("tracing paper" 
effect) (Fig. 4a, the average cosine of the angle of 
the scattering phase function g = 0.97, and  = 1°).

 

 
 

FIG  4. The dependence  = (t). The numbers on the curves correspond to the optical thickness  
of the layer. In all figures  = 1.0,  = 0.05, and D = 5.0; the angle of the field of view of the 
detector is equal to 10 angular sizes of the object, a)  = 1.0. The solid lines correspond to 
g = 0.97 and the dashed lines correspond to g = 0.80. b)  = 0.001. The solid lines correspond to 
g = 0.99 and the dashed lines correspond to g = 0.97. c)  = 0.01. The solid line corresponds to 
g = 0.99 and the dashed line corresponds g = 0.95. 

 
In the other extreme case, when the object is very 

small compared with the characteristic scale of the FSF 
of the medium with the layer flush against the object 
and the spectrum of the object is correspondingly much 
wider than the FCC of the medium, as t increases only 
increasingly lower frequencies of the spectrum are dis-
torted. Because the FCC contains a "shelf" the high 
frequencies of the spectrum of the object are reduced by 
the same factor, i.e., they are not distorted. For this 
reason, as t increases an increasingly narrower section of 
the spectrum becomes distorted, and this results in 
monotonic improvement of the ITQ of the object 
(Fig. 4b,  = 0.001, g = 0.97). 

The transfer of an image of an object whose size is 
comparable to the characteristic scale of the FSF of the 
medium when the layer is located near the object is an 
intermediate case. For small t the FCC is "wider" than 
the spectrum of the object and the first case is obtained, 
i.e., the ITQ decreases as t increases. As t increases 
further the relation between the FCC of the medium and 
the spectrum of the object changes and a situation 
analogous to the second case is observed, i.e., as t in-
creases the ITQ increases. Thus the dependence (t) has 
an extremal character, i.e., we obtain the t-effect. Note 
that since the FCC becomes narrower more sharply for 
the initial changes in t, the region of minimum image 
quality is drawn toward small values of t. 

The computational results presented in Fig. 4 
reflect the phenomena that occur when the optical 
parameters of the layer change: broadening of the 
scattering phase function of the layer (decrease of g) 
results in broadening of the FSF of the medium, which 
results in a displacement of the effects described above 
in the direction of monotonic improvement of image 
quality; increase in the optical thickness of the layer ò 
as well as increase of the single-scattering albedo  
(resulting in a lowering of the "shelf" on the FCC of 
the medium) shift the effects in the direction of 
monotonic reduction of image quality. 

Note that the limitation of the field of view of the 
detector does not introduce anything fundamentally 
new and merely shifts the observed effects in the 
direction of monotonic improvement of image quality. 

I thank V.P. Budak for assistance in the scientific 
research as well as V.V. Belov for critical remarks and 
useful discussions of the material presented in this paper. 
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