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The sensitivity of an intracavity laser spectrometer was increased by two orders of
magnitude in the near-IR (AL ~ 770—820 nm). Using this spectrometer, 132 new ab-
sorption lines were recorded in this spectral interval, which is normally considered to be

an atmospheric transmission window.

An intracavity laser (ICL) spectrum analyzer,
based on a Cr®*: GSGG laser,’ sensitive to absorption
coefficients x as low as ~ 107 ¢cm™!, has made it
possible to record absorption lines in the range of
AL ~ 770—820 nm. This spectral range is one of the
“transmission windows” of the atmosphere, and in-
strumentation with high sensitivity is needed for a
detailed analysis of the fine structure of these lines.
Earlier,? using a spectrum analyzer based on a Ti*':
Al,O3 laser, it became possible to increase the sensi-
tivity of ICL spectroscopy in this range down to
x ~ 1078 ecm~!. However, this laser has a number of
special features which complicate its use in these
measurements (a short lifetime of excitation t ~ 4 ps,
the necessity of using a “spectral transformer” with
flashlamp pumping, etc.). In this paper, therefore, the
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possibility is considered of achieving a higher sensi-
tivity of the ICL spectrum analyzer based on a qua-
sicontinuous Cr**: GSGG laser.

The optical block diagram of the experimental
setup is shown in Fig. 1. The basis of the laser crystal
was GSGG: Cr** 6 mm in diameter and 65 mm in
length, placed in a quartz silvered reflector cooled
liquid refrigerant with the additives R6G and OX-17
organic dyes. The crystal was excited one or two xenon
lamps with maximum energy of electrical pumping
W < 2 kJ. To obtain a resonator configuration close
to confocal, spherical mirrors were used (or flat in
combination with ordinary ones, and also weakly
absorbing lenses). The spectral reflection coefficients
of the mirrors were 100% in the range
AL ~ 700—900 nm.
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FIG. 1. Optical block diagram of the setup: I, 2 — resonator mirrors; 3 — active medium;
4 — xenon lamp; 5 — lenses; 6 — investigated object; 7 — photodetector; 8 — recording os-
cilloscope; 9 — spectrograph; 10 — light filters; 11 — lightsplitter.

The selection of the wavelength interval of op-
eration of the spectrum analyzer was accomplished by
substituting mirrors with the corresponding spectral
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reflection coefficients. The kinetics of pulse genera-
tion was recorded by a photodetector connected to a
recording oscilloscope. This made it possible to ex-
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perimentally record the value of the duration of qua-
sicontinuous generation, which finally determines the
sensitivity of the ICL spectrum analyzer. The laser
emission spectrum was recorded on 1-810 film behind
the spectrograph (R ~ 6 - 10°>, D ~ 1 nm/cm). To
eliminate possible parasitic flare spots, S3S-20 and
KS-19 filters, which cut off radiation below 720 nm,
were mounted at the input of the spectrograph.

The main results obtained in there experiments
were the following. In the free generation mode of the
laser, the duration of an individual spike did not
exceed 1—3 us with the total pulse duration on the
order of 150—200 ps. The maximum possible sensi-
tivity of the spectrum analyzer in this case, allowing
for 20% resolution of the absorption line, did not
exceed ~ 3 - 1078 cm™ (Ref. 1). Change of the base
length (L ~ 0.5—1 m) of the cavity and the pumping
rate, as in Refs. 2 and 3, led to a transformation from
the free generation mode to quasicontinuous genera-
tion. This, in its turn, caused an increase in the pulse
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duration of quasicontinuous generation and an in-
crease in the sensitivity of the ICL spectrum analyzer.

As the cavity configuration was changed
bringing it closer to a confocal one, the depth of the
amplitude pulsations of the generation pulse changed
and it became possible to record weaker and weaker
atmospheric absorption lines in the emission spectrum
(see Fig. 2). For an amplitude pulsation depth (A) of
~ 30—40%, it was possible to record absorption lines
whose sensitivity of detection was lower than the
values ¥ ~ 5 - 107® cm™! listed in the atlases.*®> For
A ~ 15—20%, a number of absorption lines, lacking in
the atlases,*> were recorded, which testifies that the
ICL spectrum analyzer is capable of a sensitivity of
% ~ 1078 ecm™'. The absorption lines corresponding to
the spectra in Fig. 2 are listed below (identification
of known lines is given in Refs. 4 and 5). 132 new
absorption lines were recorded within a rather small
range (AL ~ 8 nm). Thus, this spectrum analyzer may
find application in analytical spectroscopy.
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FIG. 2. Fragments of absorption spectra with 1) A ~ 100% (x ~107° ecm™), 2) A ~ 10%
(k ~10% ecm™), 3) A ~20% (x ~3-10% cm™), 4) A ~40% (x ~ 8 - 10 cm™), 5) A ~ 60%
(k ~ 107 em™), 6) A ~ 80% (x ~ 5 - 107" ecm™), 7) A ~ 90% (x ~ 8 - 107" cm ™).
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785.559 784.444 782.971
785, 506 784,357 782.925
785. 467 784,260 782.893
785.437 CN 2 |784.209 782.847
786. 401 HEO 784.174 782.746 CN
785.379 784. 152 T782.702
785. 346 784.113 T782.635 CN
785.313 784.053 T82. 606
785. 255 784.015 782.583
785. 229 783.962 H20 T782.561
785.195 CN 783.895 782.521
785.171 783.880 782. 453
785. 145 783.837 782.418 CN
785. 129 783.811 782. 387
785.087 T783.777 782.321
785.048 CN 783.740 782,298
785.028 CN |783.709 782.177 CN
785.995 CN 783.670 CN 782. 125
785.938 783.643 782.074
785.903 CN 783.578 CN? |782.041
784,875 HQU 783.562 CN 781. 965
784.847 783.460 CN |781.8950
784,838 783.414 781.923
784.797 783.374 781.902
784.76% CN7 |783.351 781- 857
784,735 783.314 781.817
784.691 783.251 781.724° CN

Note: wavelength in nm.
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