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Methods of suppressing quantum fluctuations and creating squeezed states of light 
via phase self-modulation are discussed. In contrast to traditional techniques based on 
parametric processes, those discussed here do not require phase synchronization, impor-
tant in parametric interactions. Furthermore, the discussed effect leads to the forma-
tion of intense optical fields with non-classical properties, i.e., to macroscopic sources 
of radiation with expressly quantum properties. 

 
 

INTRODUCTION 
 

The present study presents results from quan-
tum mechanical and semiclassical theories describing 
phase self-modulation (PSM) of coherent light of the 
so-called two-photon field. The main attention is 
paid to analyzing the fluctuations of the quadrature 
components of the radiation and to the output pho-
ton statistics of a nonlinear Mach-Zender interfer-
ometer. It is shown that under certain conditions the 
photons may obey sub-Poisson statistics so that the 
light field appears to be in a squeezed quantum state. 

Interest in radiation with the above non-
classical properties stems from the possibilities of 
applying it to high-precision measurements, spectros-
copy, as a means of optical communication, etc. The 
most typical feature of radiation in that expressly 
quantum state is that a decrease of photodetection 
noise below the shot noise level becomes possible. 
This applies to both direct detection (for photons 
with sub-Poisson statistics) and to balanced homo-
dyne reception (for light in a squeezed state). 

The first study to point to the possibility of the 
transformation of quantum statistics of radiation 
during PSM was Ref. 1. Studies that followed2–7 
investigated that process from every angle, including 
that of cavity feedback. A significant factor in gen-
erating radiation with sub-Poisson statistics is inter-
ference between initially coherent beams, which have 
undergone PSM. Below we discuss self-action of 
coherent radiation in a nonlinear medium, in a 
nonlinear interferometer, and in a nonlinear cavity. 
 

PSM OF COHERENT RADIATION 
 

First we carry out a quantum-mechanical analy-
sis of the PSM process. Creation and annihilation 
operators for photons which have passed through a 
medium with a cubic nonlinearity, (3) have the form 
 

 (1) 
 

where 1a
  and a1 are the slowly varying creation and 

annihilation operators at the entrance to that nonlinear 
medium, written in the Heisenberg representation; 
n1 = a1

+a1 is the photon number operator; ê is a 
nonlinear parameter related to (3) and to the depth of 
the medium L(ê – (3)L). We take the medium 
nonlinear response to be instantaneous. Note that re-
placing the operators a1

+ and a1 by the complex ampli-
tudes A1

* and A1 leads to the classical expressions for 
PSM. 

According to Eq. (1) the photon statistics dur-
ing PSM remains unchanged: 1 1 1.b b n   However 
fluctuations of the quadrature components 
 

 (2) 
 

do change. In the case of initially coherent radiation 
with amplitude 1 ( 1 1 1 1a     ), after averaging 
the operators which have been transformed as a re-
sult of PSM over the initial state 1 ,  we obtain 

for the variance of the component X1 at ê ` 1 
 

 
 

 
 

 
 

 (3) 
 

where 2
1 1( ) ,к    1 1 12( ),      1 1arg ,    
2

1 1к    is the nonlinear addition to the phase. For 
radiation of fixed phase the variance (3) is a quasiperi-
odic function of the nonlinear phase 1.

2 At the same 
time, if we consider 1 to be prescribed, the function 
(3) has the minimum 
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 (4) 
 
which is attained at 
 

 
 
As 1 grows, the value of expression (4) becomes 
less than 1/4, which corresponds to the initial co-
herent radiation. In that case the radiation is said to 
be in a squeezed state. Selecting the optimal phase 
In the phase plane X1Y1 is equivalent to rotating the 
coordinate axes of the quadrature components, so that 
the variance of quadrature (3) reaches its minimum. 

For 1 p 1 we have 
 

 (5) 
 

The compression here is inversely proportional 
to the square of the radiation intensity and the 
square of the medium depth. Hence deep compres-
sion may be obtained over a wide range of variation 
of the intensity. Note that operators (1) are not re-
duced to operators of the two-photon coherent 
state.8 Thus the PSM phenomenon produces a new 
class of squeezed states2 differing from such states 
found in parametric processes. A positive feature of 
the implemented PSM process, and hence — of the 
generated squeezed states. Is the lack of a need to 
satisfy the phase synchronism condition during such 
an implementation. 
 

NONLINEAR INTERFEROMETER WITH 
NON-CORRELATING PHOTON 

FLUCTUATIONS IN ITS CHANNELS 
 

Consider now a nonlinear interferometer 
(Fig. 1). The PSM process is realized in each of its 
arms, e.g., in a fiber light-guide (FLG). 
 

 
 

FIG 1. Diagram of nonlinear interferometer. 
 

As was shown above, radiation in such channels is 
squeezed. Radiation from both channels is mixed by 
the light-splitting plate (LSP). After mixing, the an-
nihilation operator for the exiting radiation is equal to 

 

 (7) 
 
where bj is the annihilation operator for the jth 
channel; j is the fraction of radiation in each chan-
nel. Note that we assume that 2 2

1 2 1,     i.e., there 
are no losses in the channels. 
 

The photon statistics in the resulting wave ap-
pears to be sub-Poisson. Its difference from the pure 
Poisson statistics is usually characterized by the 
Fano factor 
 

 (8) 
 
which is equal to unity for coherent radiation. 

In the considered case we have 
 

 
 (9) 
 

 
 

 
 

 
 
The deepest suppression of fluctuations in the num-
ber of photons (i.e., the minimal value of F) is 
reached for the following nonlinear phases: 
 

 (10) 
 
Results of calculations of F for a 50% mixing 

 1 2 1/ 2     and of the values of the nonlinear 

phases (10) needed in that case are plotted in Fig. 2. 
It follows from this figure that there are no funda-
mental limitations on obtaining as low a variance in 
the number of photons as needed in the interference 
field. However, the Fano factor is noticeably re-
duced only for higher nonlinear phase iIncrements. 
Their signs may then both coincide with and be op-
posite to that of the initial phase. 

From this point of view mixing of squeezed 
radiation with coherent radiation is just a particu-
lar case of the absence of nonlinearity in one of the 
interferometer channels (2 = 0). The limiting val-
ues of the Fano factor then do not differ from 
those for a scheme with two nonlinear channels; 
however, here the condition 1 p 2  0 must be 
satisfied, i.e., the realization of such a scheme 
leads to significant losses of radiation intensity. If 
on the other hand 1 2 1 2,     then fluctuations 
in the number of photons are suppressed by no 
more than a factor of 2 (F  0.5). 
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FIG. 2. The Fano factor (a), the nonlinear phase run-ons 1 (solid curves), and 2 (dotted curves) 
(b) as functions of the phase difference . The numbers above the curves correspond to values of r. 

 
Let us consider, by way of an example, nonlin-

ear interferometer with the following parameters: 
R = 0.4, 1 2 1 2,      = –158° (1 = 0.7 rad, 

2 = 2.1 rad). If single-mode quartz fibers (nonlin-
earity 2n  = 3.2  10–16 cm2/W) of 5 m core diame-

ter and lengths of L = 62.5 and 30 m are used as the 
nonlinear media, the radiation power should be 0.7 
and 4.4 W, respectively, at a wave number of 
ê  10–5 cm–1. If such conditions are met, a suppres-
sion of the variance of the photon fluctuations by a 
factor of 5 is possible (F = 0.2). 

Note that the considered nonlinear interferome-
ter has no branching channels, which would have led 
to significant losses, as, for example, is the case of 
parametric processes, where more energy must be 
used to pump the system, and only a small part of it 
is channeled into the informative signal. In the 
nonlinear interferometer under consideration the 
efficiency of transformation of coherent radiation 
into radiation with sub-Poisson statistics is deter-
mined practically only by the interference condi-
tions, the phase difference, and the ratio of intensi-
ties, and may reach tens of per cents. Nevertheless, 
to attain strong suppression of fluctuations large 
nonlinear phase run-ons are needed (Fig. 2). The 
practical problem then is that the entrance plate, 
which splits the initial beam in two in the nonlinear 
interferometer, is noisy from the quantum point of 
view. Because of that, the photon fluctuations in 
various interferometer channels must be noncorre-
lated. Meanwhile, correlated photon pairs may be 
generated in the interferometer channels, using the 
process of degenerate parametric interaction.9 

NONLINEAR INTERFEROMETER WITH 
CORRELATED PHOTON FLUCTUATIONS IN 

ITS CHANNELS 
 

First we demonstrate that interference cannot 
compensate for noncorrelated fluctuations. We write 
out the photon annihilation operator corresponding 
to the exit wave resulting from the interference of 
two beams with a /2 phase –difference, as 

 1
1 2 2 ,iк nd e a ia    where .j j jn n n    Con-

sider the quadrature operators of the initial field 

  / 2,j j jx a a     2.j j jy a a i    

Fluctuations of the photon number at the exit 
of the nonlinear interferometer are then given by 
 

 
 

 (11) 
 

 
 

We have for independent fluctuations in the arms 
2( ) 0n   only if 0.n   Correlation between the 

quantum states in the different channels can be pro-
duced via parametric scattering or by the use of a pa-
rametric generator.9,10 Photons in these processes are 
generated in pairs. However, in the first of these cases 
the vacuum fluctuations of 0j jx y   are amplified, 

and their stabilization is impossible. Meanwhile, in the 
second case (degenerate parametric generation of ra-
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diation from the vacuum fluctuations) only one pair of 
quadratures is correlated, e.g., 2

1 2( )x x    – 0. For 

the other pair, in agreement with the uncertainty prin-
ciple, 2

1 2( )y y    – . Then, however, 

1 2 1 2 0,x x y y     and the intensity fluctuations 
grow, as described by relations (11). 

How now to realize efficient suppression of 
quantum fluctuations? For such a stabilization of 
radiation the following conditions must be satisfied: 
 

 (12) 
 

 (12a) 
 

Realization of conditions (12) is possible during 
ordinary and regenerative parametric amplification 
(PA) of the initial coherent wave. 

When degeneration in frequency takes place, 
and the signal wave and the idler wave are or-
thogonally polarized (i. e., the “åå" type interaction 
tends to zero, see Fig. 3), their annihilation opera-
tors for non-cavity PA are written in the approxima-
tion of a prescribed classical pumping field as 
 

 (13) 
 

where the operators aj0 correspond to the incident 
waves,  = chG,  = shG, and G is the increment. 
In that case we have 
 

, 
 

 (14) 
 

Conditions (12) can also be realized during am-
plification of a coherent wave, split into waves of 
ordinary and extraordinary polarization with ratio of 
amplitudes 2 2

10 20 10 20exp exp .G Gx x y y      
Both the separation and combining of orthogo-

nal polarizations in the interferometer are performed 
by light-splitters (see Fig. 3). 

The Fano factor for the exiting radiation is then 
equal to 
 

 (15) 
 
Radiation with parameter relations (12) can also be 
formed during regenerative PA in a cavity paramet-
ric generator with signal injection. Evolution of the 
eigenvalues j for the operators aj of the signal wave 
and idler wave and of the complex amplitude p of 
classical pumping in this case obey the equations 
 

 
 

 (16) 
 

which hold for interaction in a high-Q cavity. The 
coefficients j characterize the energy losses, and f 
and  fp1 + fp2 the external radiation feed. Fluctua-
tion sources are temporally omitted from our equa-
tions. Deterministic sources in Eqs. (16) are impor-
tant for selecting the amplification regime. Note that 
a similar semiclassical approach was used to describe 
parametric generation in Ref. 10. 
 

 
 

FIG. 3. Diagram of source implementation: 1, 
2 — parametrically amplified signal wave and 
idler wave with mutually orthogonal polariza-
tions; H — pump. 

 
For average stationary values of the sum and 

difference quadratures (here they are classical) p =  
x1 + x2 , q = ó1 + y2, r = x1 – x2, and s = ó1 – y2, 
satisfying relations (12), we obtain 
 

 
 

 (17) 
 

Linearized equations for the quadrature fluctua-
tions, e.g., r, may be written as 
 

 (18) 
 

or 
 

 (19) 
 

here R0(t) and R(t) are the entrance and exit fluc-
tuations for the regenerative PA;  is the amplitude 
reflectance of the mirrors. The spectral densities of 
the fluctuations R(t) and R0(t), SR(), and SR,0() 
are used to express the Fano factor of the radiation 
formed in the interferometer: 
 

 (20) 
 
It can be seen that at low frequencies the fluctuation 
spectrum corresponds to sub-Poisson statistics.  

We present numerical estimates. According  to 
Eq. (20), F = 0.5 at 0 = 2 = 2c(1 – )/l, where l  
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is the cavity length during PA; for l = 10 cm and 
 = 0.9, we  have 0  5  108 Hz. For   0.10  we 
find that F  0.01. However, in the very low fre-
quency region the considered effect of suppression of 
quantum fluctuations is neutralized by fluctuations 
in the instrumentation. 

In case non-cavity PA is used, the Fano factor is 
determined by relations (15), and for an increment 
of G = 1 we have F  0.13. Recall that condition 
(12a) must be satisfied in both cases, and that it 
may be transformed into the form 2 02 1.kn I L    
 

SELF-ACTION IN A PASSIVE CAVITY 
 

Let coherent radiation enter a cavity filled with 
some cubically nonlinear medium. Instead of the 
quantum nonlinear equation for the annihilation op-
erator of the radiation we may use an equation for 
the classical complex amplitude:  = Tr(a) where 
Tr is the trace operation and  is the density matrix. 
Thus, we start from a time-dependent equation for : 
 

 
 

 (21) 
 

Here к  is a coefficient related to the medium cubic 
nonlinearity and to its length L: / ;к cк L  1 and 
2 determine the cavity losses due to partial trans-
parency of its mirrors and to detuning of the radia-
tion from the resonance frequency 0 (2 =  – 0); 
f1 and f2 characterize the external radiation feed; 
in(t) accounts for the input quantum fluctuations;  
is the amplitude transmissivity coefficient of the 
mirrors. For a high-Q cavity we have 2  21L/c, 
where L is the cavity length. We assume for clarity 
that f1 > 0. The approach outlined below is suitable 
for high-Q cavities only. 

We express (t) and in(t) in terms of the in 
quadrature components:  = x + iY; in = xin +  iyin. 
We then obtain from Eq. (21) 
 

 
 

 (22) 
 

The stationarity conditions quadrature values are 
 

 
 

 (23) 
 

The linearized equations for the quadrature fluctua-
tions are 
 

 
 

 
 

 
 

 (24) 
 

The expressions including fluctuations at the 
cavity exit may be obtained using the "time inver-
sion" technique.11 In that case, instead of Eq. (24) 
we obtain 
 

 
 

 (25) 
 

Transforming to the Fourier spectra in Eqs. (24) 
and (25) and expressing the fluctuations at the exit 
by those at the entrance to the cavity, we arrive, 
after some quite cumbersome transformations, at 
 

 (26) 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
The expression for óout() has a similar structure. 

If the radiation enters the cavity in a coherent 
state, its spectral density is ( ) ( )( ) ( ).x y

in inS S    The 

ratio of spectra for the component x, for example, is 
equal to 
 

 (27) 
 
An optimal squeezing of noise at the exit (R() = 0) 
is reached when  =  = 0, which is possible at the 
frequency  = 0 if the following conditions are satis-
fied: 
 

 (28) 
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FIG. 4. The squeezing coefficient 

( ) ( )( ) ( ) / ( )x x
out inR S S     as a function of 

2 2( / ) .X u     
 
It should also be the case that 
 

 (29) 
 
In that case the dependence of the depth of squeez-
ing on the frequency has the form 
 

 (30) 
 

Figure 4 plots R() as given by Eq. (30) for .X Y  
It can be seen that there exists an upper frequency 
crit, determined by the condition R(crit) = 1, such 
that squeezing is impossible above it. For low fre-
quencies we have 
 

 (31) 
 

Thus, low-frequency fluctuations are efficiently sup-
pressed and deep squeezing is realized. If, on the other 

hand, ,X Y.  then radiation exiting the cavity  

 

may appear to be sub-Poisson. Let  = 0 (2 = 0). 
Optimal squeezing is not achieved in this case; how-
ever, the generation of sub-Poisson statistics in this 
case is most vivid. According to Eqs. (26) and (27) 
the exit fluctuations are minimized when 
 

 (32) 
 

In this case triple squeezing is realized 
 

 
 

The variance of the intensity fluctuations 
2 2 ( )( ) 4 ( )x

outI X S    is also three times smaller than 

in the coherent state. Thus the photons exiting the 
nonlinear cavity have sub-Poisson statistics. 

In conclusion note again the perspectives of 
practical implementation of the above techniques for 
forming nonclassical states of radiation. Their attrac-
tion consists in the comparative simplicity and high 
efficiency of suppresion of quantum fluctuations. 
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