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A solution of the problem of radiative transfer through bounded scattering media, 
based on the exact solution of the transfer equation for a one-dimensional medium, and 
on the parameterization of the scattering phase function by six integral parameters is 
proposed. The accuracy of asymptotic formulas for the reflection coefficient is estimated. 

 
 

INTRODUCTION 
 

The transfer of optical radiation through scat-
tering media is accompanied by its complex trans-
formation into a scattered field. In general the at-
tenuation of the radiation incident upon the medium 
and the formation of the scattered radiation field are 
described by the transfer equation, analytical solu-
tions of which are presently available only for indi-
vidual, particular cases. Therefore, a systematic 
analysis of radiative transfer through scattering me-
dia based on the existing solutions of this equation 
appears to be ineffective: recall the wide range of 
scattering properties of various natural media and 
the range of optical depths of practical interest. 

Particular difficulties are encountered in analyz-
ing the propagation of optical radiation through 
scattering media when the spatial boundaries of the 
beam, or the scattering volume, or both have to be 
accounted for. Even the first experiments in propa-
gation of weakly divergent laser beams of small di-
ameter through fogs and hazes demonstrated1–3 that 
the extinction of brightness for such beams is de-
scribed by Bouguer’s law down to unexpectedly 
large optical thickness. Similar experimental results 
were obtained for optical beams from sources of 
thermal radiation.4,S Further studies made it possible 
to qualitatively interpret this effect as resulting from 
a considerably depleted brightness of the multiply 
scattered background radiation for narrow beams, as 
compared with wide ones. The effect of conservation 
of the observed contrast between the brightnesses of 
the total and forward scattered laser radiation at 
large optical depths stimulated the design and con-
struction of laser navigation devices for aircraft 
landing and ship navigation under conditions of low 
visibility.6 However the physical interpretation of 
this effect cannot be considered complete. In particu-
lar, so far we lack either relationships or sufficiently 
effective algorithms to calculate the background 
multiply scattered radiation at large optical thick-

nesses for complex boundary conditions, which take 
place when narrow beams propagate through spa-
tially bounded volumes of scattering media. 

Attempts were undertaken many times to ac-
count for finite dimensions, shape, and other bound-
ary conditions of the scattering volume when solving 
the transfer equation. The most complete (though 
restricted to a limited range of optical depths) ac-
count of the boundary conditions for the scattering 
medium and different optical beams was achieved in 
radiative transfer calculations which applied statisti-
cal techniques.7 Analytic efforts to account for the 
shape of the scattering volume at high orders of scat-
tering are also known.8 

Below, one of the heuristic techniques is dis-
cussed which claim to provide a general approach to 
the account of spatial limitations of the scattering 
volume in the solution of the problem of optical 
beam propagation. This approach serves as a basis 
for a generalized semi-analytical technique for calcu-
lating radiative fluxes in scattering media, which 
yields an acceptable level of accuracy in the solution 
of the transfer problem for different geometrical 
schemes and boundary conditions. 

The idea of this approach consists in taking the 
known analytical solutions for the one-dimensional 
case as the basis for the desired solution. In the course 
of generalizing these solutions the individual parame-
ters in these analytical formulas acquire an additional 
physical meaning and new computational algorithms 
are designed for the three-dimensional case. The new 
computational algorithms are based on a consistent 
account of the transmission. reflection, and absorption 
of radiation by the individual scattering layers which 
comprise the whole scattering volume. The advantage 
of this technique, as compared with the statistical ap-
proach, in which the trajectories of individual photons 
are tracked, consists in the consistent tracking of the 
trajectories of whole fluxes of multiply scattered ra-
diation, which simplifies the computational procedures 
and considerably increases their efficiency. 
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EXTENSION OF THE EXACT SOLUTION  
OF THE RADIATIVE TRANSFER EQUATION  

FOR THE ONE-DIMENSIONAL CASE 
 

Regard an elementary scattering volume with 
volume extinction coefficient  =  + ê. Here  is 
the volume scattering coefficient and ê is the volume 
absorption coefficient. We shall characterize the 
scattering properties of an elementary volume by the 
integral parameters of the scattering phase function, 
to be determined below. 

To describe the transfer of monochromatic ra-
diation through a scattering medium we shall use the 
exact solution of the transfer equation for the one-
dimensional case. One can then introduce the vari-
ables  and  which characterize the fraction of the 
radiation scattered forward and backward, respec-
tively, by an element of optical length d = dx. 
For radiation propagating along the x axis the values 
I1  (forward direction) and I2 (backward direction) 
are introduced. If an element of the medium of 
length d does not emit radiation itself, the equation 
of radiative transfer for it consists of a system of two 
differential equations9 

 

 
 

 (1) 
 
where the photon survival probability is 
 = /( + ê). The solutions of Eq. (1) have the form9 

 

 
 

 
 

 (2) 
 
where I1 is the transmitted radiation, I2 is the re-
flected radiation, and I3 is the radiation absorbed by 
the layer. Note that the parameters k and r stand for 
the following expressions: 
 

 
 

 (3) 
 

The principal step in extending solutions (2) for the 
one-dimensional case consists in accounting for the 
radiation leaving the transfer process not only as a 
result of absorption and reflection, but also for that 
exiting through the sides of the propagation channel. 
One of the most evident physical reasons for such an 
effect is sideway scattering. The representation of 

the scattering phase function via its integral parame-
ters in the form of two scattered fluxes — one for-
ward and the other backward — is insufficient for 
such an extension. A next-in-accuracy representation 
of the scattering phase function would in this case 
be a six-flux approximation in which the integral 
parameters satisfy the normalization condition10 
 

 
 

These are described for an axially symmetric phase 
function by the relations: 
 

 
 

 
 

 
 

 
 

 
 

 (4) 
 

It is apparent from Eqs. (4) that the integral pa-
rameters of the scattering phase function thus intro-
duced determine the fraction of radiation scattered 
in the direction of the x axis (), the apposite direc-
tion (); the direction of the ó axis (1), the oppo-
site direction (2); the direction of the z axis (3). 
and the opposite direction (4). The normalization 
condition introduced above for the integral parame-
ters eliminates the seeming contradiction of integrat-
ing the scattering phase function for each parameter 
over overlapping scattering angles. To account for 
losses due to radiation exiting through the sides of 
the volume ("sideway losses") we introduce, similar 
to the notion of the photon survival probability , 
the photon extinction probability. After thus ac-
counting for sideway losses we may write for the 
value of p1 = 1 – = ê/ in the case of radiation 
propagating through a scattering medium 
 

 (5) 
 

The index "i" here points to the physical process caus-
ing the radiation to leave the propagation channel. 
The probability of a photon leaving the volume due to 
absorption is p1 = 1 –  and the respective probability 
of radiation leaving the propagation channel due to 



B.V. Goryachev et al. Vol. 3,  No. 2   /February  1990/   Atm. Opt. 127 
 

 

scattering in the various directions is p2 = 1, 
p3 = 2, p4 = 3, p5 = 4. The total probability of 
a photon leaving the process due to sideway losses, as 
a result of scattering only, looks as follows: 
 

 (6) 
 

The solution of the radiative transfer equation for the 
one-dimensional case can now be extended and for-
mally written in the same form as formulas (2), where 
the parameters k and r are replaced by K and R 
 

 
 

 (7) 
 

 
 

 
 

The form of formulas (7) has a heuristic character and 
can be justified by the need to account for "sideway 
losses" from a one-dimensional column. This need is 
actual even when such a column is surrounded by a 
medium with identical scattering properties. Note that 
I3 in formulas (2) will then determine the total radia-
tion flux both absorbed by the column and transferred 
through the column sides. According to Eq. (6) the 
fraction of the total radiation flux absorbed by the 
medium is given by the value p1/p and the respective 
fractions exiting through the column sides — by the 
values p1/p (for i = 2, 3 — in the direction of ó axis 
and in the opposite direction, and for i = 4, 5 — in 
the direction of the z axis, and opposite). 

The following step in extending the solution (2) 
of the one-dimensional case is dictated by the need 
to broaden its range of applicability; the latter 
should include the case in which the radiation source 
is contained within the propagation channel (i.e., 
between the top and bottom of the scattering column). 
Such an extension can be based on the successive ap-
plication of the multiple reflection method (the layer 
adding method). 

The essence of the multiple reflection method be-
comes transparent if we consider two layers homogene-
ous in their scattering properties of optical thicknesses 
1 and 2. We will denote their transmittances as A1 
and A2, their reflectances as B1 and Â2, and their ab-
sorptances as Ñ1 and Ñ2, and their combined transmit-
tance, reflectance, and absorptance as A12, Â12, Ñ12, 
respectively. Then, according to the available solu-
tions9,11 the formulas for A12, Â12, and Ñ12 have the form 
 

 
 

 (8) 
 

Let the source of optical radiation be placed at the 
boundary between the scattering layers with optical 
thicknesses 1 and 2 so that it uniformly illuminates 
each of the layers with a parallel beam of intensity 
I0/2 along the x axis (the same intensity goes into 
the opposite direction). Accounting for all the orders 
of scattering covered by formulas (8) for the radia-
tion intensities exiting the combined layer of thick-
ness 0 = 1 + 2 in the direction of the x axis (I+x), 
we obtain11 

 

 
 

 (9) 
 

After introducing the values of intensities (2) and 
(3) we obtain 
 

.

 
 

.

 
 

 (10) 
 

where K and R are given by Eqs. (7) and, conse-
quently, are uniquely determined by the integral 
parameters of the scattering phase function. 
 

3. APPROXIMATE SOLUTION OF THE 
RADIATION TRANSFER PROBLEM FOR THE 

THREE-DIMENSIONAL CASE OF A SPA-
TIALLY BOUNDED SCATTERING VOLUME 

 
To retrieve the three-dimensional solution of the 

radiative transfer equation from the exact analytical 
one-dimensional solution we do as follows.  First we 
treat the radiative transfer through elementary vol-
umes in each of three mutually independent direc-
tions step by step and then combine the general so-
lution from these. A similar approach is also imple-
mented to solve the radiative transfer problem by 
the Monte-Carlo technique, in which the independ-
ent photon trajectories are modeled step by step as 
separate acts of interaction with scatterers, and the 
photons exiting the volume are summed in different 
combinations. In contrast to direct modeling (i.e., to 
the Monte-Carlo technique), using the one-
dimensional solution to solve the three-dimensional 
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problem opens up an attractive possibility to model 
the transfer process as whole chains of interaction 
acts. For each independent direction the exact three-
dimensional solution can be envisaged as exactly 
such a separate and independent interaction chain. 

Since the formulas for the one-dimensional case 
are written out (see the above section) in a form 
which accounts for the sideway losses, this approach 
can hopefully result in an analytical account of all 
the orders of scattering in any arbitrary direction. 

Another principal factor in the obtaining of 
such three-dimensional solutions is that we use the 
well-known technique of multiple reflections. It is 
that particular technique that justifies the layer-by-
layer summation of all the components of the direct 
and scattered radiation. Consistent application of 
this technique is what principally distinguishes our 
approach from the six-stream approximation and the 
four-parameter two-stream approximation. While in 
the latter case we not only have to resort to an ap-
proximate description of the scattering phase func-
tion, but must also content ourselves with approxi-
mate solutions for the various intensity components, 
in the proposed approach the accuracy of the solu-
tion is only limited by the approximate (six-stream) 
representation of the scattering phase function. Note 
that analytic solutions are used for the radiation 
intensities in the different directions. 

To simplify the subsequent discussion we take 
as our scattering volume a rectangular parallelepiped 
with arbitrary side lengths x, y, and z. Such a re-
striction of the shape of the volume is of no funda-
mental importance since application of the layer 
summing technique makes possible the retrieval of 
the necessary relations for a scattering volume of any 
shape. The final solution of the radiative transfer 
equation in the three-dimensional case can then be 
expressed by writing out the solutions for the ele-
mentary scattering volumes in each of the three car-
dinal directions. Combination of the one-dimensional 
solutions in three mutually perpendicular directions 
yields the solution of the three-dimensional problem. 
Because of the bulky form and complicated character 
of the Intermediate expressions for the radiation 
fluxes in the three cardinal directions we only pre-
sent a simplified example, considering only one of 
these three directions (along the x axis). 

Let an elementary scattering volume of the me-
dium be uniformly illuminated along the x axis by a 
flux I0. The flux transmitted in the x direction may be 
thought of as consisting of three components: the di-
rect flux attenuated by the layer d, the forward sin-
gle-scattered flux I0   J+x d, and the forward multi-
ply scattered flux I0 4  J+x d, where J+x is the frac-
tion of the multiply scattered radiation in the x direc-
tion. The flux reflected from the elementary volume d 
is composed of two components: the backward singly 
scattered component I0   d, and the backward mul-
tiply scattered component I0 4  J–x d, where J–x is 
the fraction of multiply scattered radiation in the –x 
direction. The multiply scattered fluxes leaving the 

elementary scattering volume d in the ó and z direc-
tions will be equal to I0 4  J°y d and I0 4  J°z d  
respectively. Finally the flux absorbed by the elemen-
tary layer will be equal to I0[( + )(1 –
 ) + 4  J] d where J is the fraction of the multi-
ply scattered flux absorbed by the layer d. 

The main difficulty in the subsequent calcula-
tions consists in determining the fractions of multi-
ply scattered radiation for each of the three cardinal 
directions. Such fractions for the fluxes J+x, J–x, and 
J at any optical thickness are given by formulas 
(2). As for the other directions the respective frac-
tions of the multiply scattered radiation can be ob-
tained from formulas analogous to (2), but after ac-
counting for that fraction of radiation which exits 
the volume in the ó and z directions, taken as the 
initial flux. In general such a step-by-step scheme of 
reasoning is quite cumbersome even for such a primi-
tive shape as a parallelepiped.11 Forgoing a treat-
ment of this problem here, we note only that it is 
straightforward and simple, although cumbersome, 
and therefore possible to calculate for volumes of 
complex shape.12–20 Also that the normalization con-
dition for fractions of the multiply scattered radia-
tion is obvious; it is derived from the law of energy 
conservation and has the form 
 

(11) 
 

We also stress that because of the finite size of the 
scattering volume in our example the fractions of 
radiation propagating along the ó and z axes of the 
elementary layer d do not depend on the optical 
thicknesses y and z. 

Assuming the fractions of multiply scattered 
fluxes to be known, let us determine the probability 
that a photon will exit our elementary layer. We 
denote the total probability that the photon will 
exit the volume as P0; this value is equal to the sum 
of the components 
 

P0 = 
5

0
1

i
i

P

 , (12) 

 

Íåãå P01 =  ( + )(1 – ) +  4J is the probabil-
ity that the photon will leave the volume due to 
absorption; 

P02 = 4  J+y (y) is the same due to radiation 
exiting in the direction of the ó axis; 

P03 = 4  J–y (y) — the same due to  radiation 
exiting in the opposite direction; 

P04 = 4  J+ z(z) — the same due to  radiation 
exiting in the direction of the z axis; 

P05 = 4  J–z (z) – the same due to radiation 
exiting in the opposite direction. 

Using the generalized one-dimensional solution 
of the radiative transfer equation we can again write 
the three-dimensional solution for an elementary 
layer in the form of Eqs. (2) with the parameters 
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 (13) 
 
In combination with the computational algorithms 
for calculating the respective variables relations (2) 
and (13) represent the desired semi-analytical three-
dimensional solution of the problem of radiative 
transfer for a spatially bounded scattering volume. 
The principal advantage of the obtained solution is 
its high efficiency: computation of the intensity 
components along each direction can be performed 
using data which include only quite common and 
definite parameters of the medium and of the scatter-
ing volume as a whole. 

The main source of possible errors in the these 
solutions stems from the approximate description of 
the scattering phase function in terms of its six-
stream integral parameters. The accuracy of this so-
lution can be estimated by comparing it to the exact 
solution for an unbounded scattering layer with a 
spherical scattering phase function. 

For a scattering layer with y = z = x =  and 
an arbitrary scattering phase function the intensity of 
the reflected radiation is given within the framework 
of the proposed approximation by the formula21 

 

 
 

 (14) 
 
In the particular case of the Rayleigh phase function 
we have  =  = 1/4,  = 1/8. Substituting the 
these values of ,  and  into Eq. (14) we obtain 
 

 (15) 
 

For the spherical phase function  =  = 1/6 
and the Eq. (14) becomes 
 

 (16) 
 

Table I compares the values of the reflectance for 
a semi-infinite medium R as function of the photon 
survival probabilities, calculated using different com-
putational formulas for R , with the exact solution, 
which is known in the literature,17 and also with the 
results of two-stream and six-stream approximate cal-
culations.18 As can be seen from Table I, tie obtained 
solution of the transfer equation yields acceptable ac-
curacy. It is the most accurate among the other ap-
proximate solutions in this asymptotic case. 
 

TABLE I 
 

 
 

4. CONCLUSION 
 

The present review paper discusses the principal 
prerequisites for obtaining an approximate solution of 
the radiative transfer problem for the case of a spa-
tially bounded scattering volume. Comparison of it 
with other approximate solutions and the exact solu-
tion demonstrates that for a wide range of scientific 
and practical tasks the accuracy of the new solutions is 
quite acceptable. We expect that the main application 
of the solution will be to the applied spectroscopy of 
various scattering media, where quantitative data are 
usually obtained from measurement within spatially 
bounded scattering volumes. The approximate solu-
tions described above also simplify the task of comput-
ing the planetary radiation budget as well as other 
radiative properties of spherical atmospheres. 

The main advantage of the obtained approxi-
mate semi-analytical solutions consists in the fact 
that the computational algorithm for radiation scat-
tered by a spatially bounded volume of arbitrary 
shape appears to be simple enough at an acceptable 
accuracy level and not too demanding in terms of 
computational time. Therefore, operational calcula-
tions of the transmitted, side-scattered and reflected 
radiation for the volume as a whole appear possible 
if the optical and geometrical parametersof the scat-
tering volume are known. This advantage would seem 
important for radiative studies of the atmosphere both 
from ground-based and from airborne platforms. 

Note also that the efforts to obtain an approxi-
mate solution of the transfer equation described in 
the present study were stimulated by experimental 
results on the propagation of narrow laser beams 
through scattering media. The obtained solutions 
present a reliable basis for both qualitative and 
quantitative studies of the brightness contrast trans-
fer for laser beams propagating through the turbid 
atmosphere. However, a discussion of the result from 
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such an analysis as well as a presentation of the so-
lutions obtained for that case are outside the scope 
of the present study.  
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