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A closed model of laser beam self-action is constructed for conditions of self-
induced convection in the penetrated medium. A numerical analysis is carried out of 
the structure of the radiation upon exit from the gas cell for a wide range of heat re-
lease parameter values. A quite simple algorithm is suggested for dynamic control of 
the beam wavefront at the cell entrance based on the use of the current distribution of 
the uncontrolled output phase. 

 
 

Propagation of laser radiation through closed 
volumes is accompanied by various nonlinear effects, 
the most important among them being refraction at 
self-induced fluctuations of the medium density and 
temperature. Temperature gradients produced by 
absorption of radiation energy in such volumes lead 
to the development of convective drafts in the me-
dium. Conversely, such convective movements alter 
the temperature- dependent refractive index distribu-
tion and thus affect the conditions of the beam 
propagation, so that the problem of thermal self-
action becomes one of self-consistency. 

The analysis of thermal defocusing under the 
conditions of self-induced convection presents quite 
a difficult mathematical problem; indeed, the con-
vective velocity distribution cam only be retrieved 
by integrating the equations of hydrodynamics for 
the considered volume. Authors of studies in radia-
tion-induced convection1–3 have mostly analyzed the 
structure of gas or fluid flow in flat closed volumes, 
assuming these to be illuminated by a flat homoge-
neous light beam (in connection with questions of 
"mixing" and heat transfer). Studies 4 and 5 regard 
the case of convection induced by a limited laser 
pulse. The inverse effect of convection upon the 
propagating radiation was treated in Refs. 6 and 7 
within the thin-lens approximation; more detailed 
calculations may be found in Ref. 8. Note that the 
last work considered the case of stationary convec-
tion only. However, it is non-stationary perturba-
tions in particular which are important for propaga-
tion of light pulses of duration comparable to the 
characteristic setting-up time of convective drafts. 

The present study is dedicated to a theoretical 
analysis of light beam propagation in the regime of 
nonstationary self-induced convection. A closed 
computational model was constructed to describe 
such self-action, including the Navier-Stokes equa-
tions and the equation for the complex amplitude of 
the light field. To control the incident radiation 
phase front a flexible mirror deformed by a system 

of lateral forces and torque moments was employed. 
The quality of such control was estimated by ex-
panding the exit radiation phase into lower—order 
optical aberrations. A simple algorithm of dynamic 
compensation for nonstationary thermal self-action 
of the beam in convective drafts is studied. 
 

1. MATHEMATICAL MODEL OF BEAM 
PROPAGATION 

 

Let us consider the process of laser beam interac-
tion with the medium. A light beam of initial radius a0 
is propagating along the axis of a horizontal gas-
containing cell of length z0 and lateral dimension l. 

The longitudinal scale of the light field varia-
tions is assumed to substantially exceed the corre-
sponding lateral scale. The same assumption is as-
sumed to be valid for the velocity field and the tem-
perature field of the medium, with the exception of 
boundary zones at the front (z = 0) and rear (z = z0 
) walls of the cell. To quantitatively estimate the 
thickness of such boundary layers, we refer to the 
results of a dimensional analysis,9 according to 
which the principal parameter for photoabsorptive 
convection is the dimensionless thermal complex: 
 

 (1) 
 

where , , 0, and Ñp are the molecular absorption 
and thermal expansion coefficients, the volume spe-
cific heat of the medium; v is the kinematic viscos-
ity; g is the acceleration due to gravity; I0 is the 
characteristic radiant power density at the cell en-
trance. As a rule, q p 1 in practice, so that the re-
gime of developed convection is realized in the gase-
ous medium, with characteristic flux velocities 
 

 (2) 
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We find from (2) that the boundary layer 
thickness, defined according to Ref. 10 as 
 / ,kLv V>  does not, in most cases, exceed the 

beam radius a0, thus satisfying the inequality  n z0. 
Hence one may neglect boundary layer effects at both 
ends of the cell upon the velocity and temperature 
fields within the cell volume, and reduce the problem 
to its two-dimensional hydrodynamic analog. As is 
well known,10 the motion of a viscous heat-conducting 
gas is described by the system of Navier-Stokes equa-
tions in Bussinesq's approximation, which, neglecting 
compressibility, may be written as 
 

 (3) 
 

 (4) 
 

 (5) 
 

The differential operators  and  are here taken to 
operate along the transverse coordinates x, y; the gas 
velocity 


V  has two components: 


( , , 0);x yV V V  

and the medium vorticity  and current function , 
satisfy the relations 
 

 
 

Other notations are as follows:  is the thermal dif-
fusion coefficient; f is the laser beam intensity pro-
file; Re = a0Vk/ is the Reynolds number; Pr = / 
is Prandt number. The independent variables in the 
dimensionless system of Eqs. (3)—(5) are normalized 
by the following scale factors: the coordinates x, ó – 
by the laser beam radius a0; the velocity V — by the 
characteristic velocity of developed convection Vc 

(2); the time t — by t0 = a0/Vc; the temperature 
T — by the scale T0 = a I0 à0/(0 Ñp Vc); the vor-
ticity  — by 1/t0; the current function  — by 
a0Vc. The system is completed by the boundary con-
ditions of zero gas velocity and constant temperature 
at the cell walls. 

To integrate system (3)—(4) a two-step explicit 
Lax-Wendroff scheme11 was employed and the Poisson 
equation (5) was solved using Hawkney’s technique.12 

Laser beam propagation through a weakly ab-
sorbing medium is described by the quasi-optical 
equation written for the complex slowly varying 
amplitude of the light wave E(x, y, z, t). Using the 
above scales for the transverse coordinates and the 
temperature perturbations, and also introducing a 
longitudinal scale  2

0dz ka  (here k is the wave num-
ber), and an electric field intensity scale 

 0 0 08 / ( ),A I cn  we may write the equation of 

beam propagation in its dimensionless form 
 

 (6) 
 

The nonlinearity parameter entering in Eq. 6 
 

 (7) 
 

is proportional to the radiant power   2
0 0P a I  and 

the radiation-medium interaction time t0 = à0/Vc in 
the transient convection regime. Thus the self-
consistent problem of radiation-medium interaction is 
characterized by four parameters: R, Re, Pr, and q. 

In addition, in the treatment of the problem of 
gravitational convection it is convenient to use such 
dimensionless parameters as the Grasshoff number 

   3 2
0 0 0 0/ ( )pGr ga I t C v  and the Rayleigh number 

Ra = Gr  Pr. At the entrance to the cell (z = 0) the 
boundary conditions for the complex amplitude are 
given 
 

(8) 
 
where E0(x, y) is the fixed amplitude profile of the 
beam; F(t) is the temporal envelope of the light 
pulse; U(x, y, t) is the controlled phase profile. In 
numerical simulations of self-action the amplitude 
profile is taken to be Gaussian: 
 

 (9) 
 
and the following expression is used for the pulse 
envelope: 
 

 (10) 
 

Equation (6) was solved by decomposing it into 
to its physical factors,13 using the Fourier fast trans-
form.4 

 
2. EXIT PHASE ANALYSIS AND WAVEFRONT 

CONTROL 
 

To analyze the spatial-temporal structure of the 
phase distortions in the beam exiting from the cell, 
we expand the outgoing wavefront (x, y, z0, t), 
minus its constant component, into a system of 
primitive optical aberrations 
 

 (11) 
 

where 
 

Z1 = R1
1
() sin v = y is the distortion,  

Z2 = R2
0
() = 22 – 1 is the defocusing, 

   2 2 2
3 2 ( ) sin 2Z R v x y  is the astigmatism, 

    1 2
4 3( ) sin (3 2)Z R v y  is the  coma, and 

    0 4 2
5 4 ( ) 6 6 1Z R p p  is the spherical aberration. 

Here  and v are the polar coordinates in the z = z0 
plane, and ( )m

nR  are the radial Zernike polynomials.5 
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The expansion coefficients in the given basis (11) are 
given by the formulas 
 

(12) 
 

Here kZ | is the norm of the kth mode. The extent 

of the beam phase distortions is also characterized by 
an integral criterion 
 

 (13) 
 

recorded within an aperture of area . In our calcu-
lations  was modeled as a circle with radius close 
to that of the beam. 

In certain problems an estimate of the contribu-
tion of aberrations of the third and higher orders to 
Jph is of separate interest. Such an estimate may be 
obtained by representing the phase  as 

 = 
3

1
k k

k

a Z


    and calculating the value of the crite-

rion 
 

 (14) 
 

To minimize the nonlinear distortions accumu-
lated by the beam in the cell, we propose to intro-
duce dynamical control of the input wavefront. One 
may use a flexible mirror, gimballed at its center 
and deformed by a system of lateral forces and 
torque moments (Fig. 1). 
 

 
 
FIG. 1. Flexible mirror: a) top view; b) side view. 
 

When the beam is almost normally incident 
upon the mirror, whose flexure is given by 
(x, y, t), the reflected beam accumulates a phase 
run-on 
 

 (15) 
 

It is known from the theory of thin plates16 that the 
flexure of the central area of such a plate, approxi-
mately coinciding with the flexure of the reflecting 

mirror surface. Is described by biharmonic equation 
 

 (16) 
 

where D is the cylindrical rigidity of the plate; 
Q(x, y) is its distributed lateral load. For the chosen 
mode of mirror deformation we have Q = 0, and the 
boundary conditions at its perimeter L may be writ-
ten as follows: 
 

 
 

(17) 
 

Here n and s are the normal and the tangent to 
the respective part of the mirror perimeter Lj; 


jr  is 

the radius vector of the application point of the lateral 
force Pj and the torque moment Msj (j = 1, 2, 3, 4). 
At the central, gimballed point we have 
 

 (18) 
 

Calculations of the mirror flexure under the bound-
ary conditions (17)–(18) were performed using the 
finite elements technique.7 

 
3. SPATIAL-TEMPORAL STRUCTURE OF THE 

PULSE DISTORTIONS 
 

Numerical experiments with collimated beams 
(U = 0), propagating through cells of 
0.001  z0  0.01 length, were performed with the 
heat release parameter q varying within the range 
105  q  107. The corresponding values of the pa-
rameter R were chosen from within the range 
90  |R| 1800. 

The calculations demonstrated that under such 
conditions the temporal behavior of the beam exit 
phase profiles is quite conformative, so that they differ 
from each other mainly in the amplitude of their dis-
tortions as a function of the values of z0, q, Re, and 
R. Figure 2 presents, as an example, a typical depend-
ence of the phase expansion coefficients in the basis 
(11). It can be seen that the wavefront slope in the 
vertical plane a1 and its defocusing à2 are non-
monotonic, the maximum in a1 being reached at 
t > 3t0, and the maximum in 2a  – at t > 2t0; follow-
ing these maxima such aberrations start to decrease, 
reaching their stationary values at t > (4–5) t0. The 
astigmatism |a3| increases almost monotonically up to 
t > 4t0, following which it stabilizes. As a result the 
beam divergence in the vertical plane is markedly 
less than in the horizontal. Joint analysis of Figs. 2 
and 3, where the solid lines represent the changes in 
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the integral phase criteria Jph and 
phJ , shows that 

the aberrations of the orders higher than the second 
are quite insignificant for collimated beams. 
 

 
 

FIG. 2. Dynamics of lower-order aberrations of 
the wavefront upon exit from the cell. Propaga-
tion conditions: z0 = 0.05; R = –380; Re = 100; 
Gr = 104; Ra = 6  103. 

 

 
 

FIG. 3. Integral phase criteria Jph and 
phJ  as 

functions of time. For propagation conditions see 
legend to Fig. 2. Solid curves — no control; 
dashed curves — controlled. 

 
4. EFFICIENCY OF PROCRAMMED CORREC-

TION OF PHASE DISTORTIONS 
 

A very simple algorithm of programmed phase 
front correction may be described by the relation 
 

 (19) 
 
where  is an empirically selected coefficient. When 
realizing this algorithm numerically the problem of 
beam propagation through the cell is solved twice: 
first, to calculate and store the exit phase values of 
the uncontrolled (collimated) beam at every time 
step and every grid-point; and second, to model the 
dynamical control (19) and to analyze the residual 
phase distortions res. To approximate the phase pro-
file formed at the flexible mirror surface the least 
squares technique is employed. 

Numerical experiments demonstrate that such 
programmed control (19) cam considerably reduce 
the phase distortions accumulated by the beam in 
the cell along beam paths not exceeding z0 = 0.05 
for  = 1. As a result of such control the wavefront 
curvature and slope are reduced 3–6 times. The 
value of the integral phase front criterion Jph is re-
duced by a factor of 2–3, the latter being less sensi-
tive to local deviations of the beam front from a 
flat. However, the relative contribution of higher-
order aberrations (cf. Fig. 3, dashed curves) increases 
during such control; the latter fact can apparently be 

explained by changes in the characteristic size of the 
thermal lens generated along the beam path. 

On longer paths (z0  0.1), when the diffrac-
tional and nonlinear phase run-ons become signifi-
cantly non-additive, the efficiency of correction (19) 
at  = 1 diminishes. In this case it would be advis-
able to optimize the correction amplitude ; it would 
also be convenient to choose as the optimization cri-
terion the temporally averaged value of the integral 
phase criterion: 
 

 (20) 
 

An example of such an optimization is illustrated 

by Fig. 4, which presents the dependence of phJ  on 

the parameter  for beam propagation through the cell 
at z0 = 0.1. A distinct minimum can be observed, at-
tained by this phase criterion in the range  > 1.2. 
 

 
 

FIG. 4. Optimization of the phase correction am-
plitude . Propagation conditions: z0 = 0.1; R = –
83; Re = 50; Gr = 2  103; Ra = 1.2  103 

 
Such an optimization is possible within a wide 

range of the variables z0 and R; however, its capa-
bilities are reduced for longer beam paths. 

On the whole the above analysis convincingly 
demonstrates that simple programmed control of the 
beam wavefront using a flexible mirror with four 
servodrives efficiently compensates for nonlinear 
phase distortions in a horizontal cell without produc-
ing any significant aperture effects. As a rule, within 
the ranges of the variables considered, the relative 
deviations from the undisturbed (vacuum) values of 
such beam characteristics as energy center shift and 
exit energy radius of the beam are found to change 
sign after control is switched on, but do not exceed 
the respective uncontrolled values in their moduli. 
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