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An iteration algorithm for the approximate solution of the problem of determining the 
Karhunen-Loeve basis using experimental data within the framework of a linear model of 
random vector fields of the vector argument is suggested. An example of such fields can 
be seen in an ensemble of multizonal images. 

 
 

Linear models for representing data in orthogonal 
bases are widely used in the processing of multidimen-
sional experimental data. The most preferable among 
all these is the Karhunen-Loeve basis (known in the 
literature on meteorology, hydrology, oceanology, at-
mospheric and ocean physics as the basis of empirical 
orthogonal functions);1–5 in this case the approximating 
series has the least number of components, while retain-
ing a high accuracy of approximation of the data.6,8 

Tendencies which have appeared of an increasing 
dimensionality of the recorded data (in particular, the 
appearance of a multizonal aerospace survey) and the 
problems of Joint data processing arising from it add 
urgency to the problem of creating linear models of 
multidimensional observations described by means of 
random vector fields. In this connection, this paper 
considers the quite general problem of representing 
vector fields of a vector argument, as well as the prob-
lem of finding a corresponding Karhunen-Loeve basis 
based on the experimental data, and an iterative algo-
rithm is suggested for the approximate solution of the 
above problem. We assume that a random (for simplic-
ity and without loss of generality, centered) vector 
field 1( ) ( ( ),..., ( ))s Tu u u   

   
of a vector argument 

1( ,..., )Tu u u


(where s and  are the dimension of the 

function () 


 and of the argument ,u


 respectively, and 
T is the transposition symbol) is represented in its do-
main of definition 
 

 
 

by a set of N realizations 1( ),..., ( ).nu u 
  

 
Let us represent a vector field In the following 

(generally speaking, non-unique)7 form: 
 

( )u 
 

( ),i u
 

 (1) 

 
where the limit Is understood in the sense of non con-
vergence in the space of realizations of a random vec-

tor of the vector field; 1{ ( )}ku
 

 are the basis vector 
functions of the vector argument. Random coefficients 
{X1}k are determined by the minimum condition of the 
mean square weighted deviation 
 

 (2) 
 
where M is the mathematical expectation operator, 

( )u


 is a scalar weight function, non-random on D; 
and   is the Euclidean norm in the observation space. 

If one imposes upon the basis functions 1{ ( )}ku
 

 
the orthonormality conditions 
 

 (3) 
 
where ij (i, j = 1, , k) is the Kronecker symbol, 

1 ... ,du du du  


 and (,) is the symbol of the 
weighted scalar product, then the representation coeffi-
cients {X1}k that minimize expression (2) have the form 
 

 (4) 
 

The existence of a limit of the series (1) and of a 
complete orthogonal sequence of basis functions 

1{ ( )}u 
 

 is assured by considering only those processes 

( )u
 

that satisfy the following condition: for any fixed 
set of the values of the components of a vector ,u D


 

[ ( ) ( )] .TM u u   
  

 One can also find basis functions 

1{ ( )}ku
 

 from the minimum condition of the mean 
square test of the goodness criterion (2) of the ap-
proximation of the vector field ( )u

 
 by the series (1) 

truncated to k terms. 
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A solution of the above variational problem for a 
conditional (in the sense of constraints (3) imposed 
upon the functional (2) via the Lagrange multipliers) 
extremum leads to a homogeneous Fredholm integral 
equation of the second kind 
 

 (5) 
 

where  is a Lagrange multiplier, and all the basis 
function indices are omitted because of the equivalence 
of all the equations. 

The desired basis 1{ ( )}ku
 

, corresponding to the k 

greatest eigenvalues {1}k, is found by solving Eq. (5); 
however, in the general case this problem is not easy. 

Having at our disposal a set of N realizations 

1( ), ..., ( )Nu u 
  

 (a sample of size N), which character-
izes the general set of all realizations generated by a 
random field ( )u

 
“sufficiently completely," it is natu-

ral to make use of the following sample estimate of the 
correlation function 
 

 (6) 
 

In this case problem (5) simplifies substantially (the 
case of a degenerate kernel in Eq. (5)).9 Indeed, by sub-
stituting Eq. (6) in the integral equation (5), we get 
 

 (7) 
 

where ˆ,N    and ̂  and ( )u



 

 are estimates of the 

corresponding quantities  and ( ).u
 

 
Let us introduce the following notation: 

 

 
 

then from Eq. (7) we obtain an expression for the basis 
functions 
 

 (8) 
 

where the coefficients {CJ}N are still undefined. Sub-
stituting the parameterized expression (8) of the basis 

function ( )u





 in Eq. (7), we obtain the equality 
 

 (9) 
 

Let us calculate the scalar product in this expres-
sion 1( , )j  

 
 by means of the random field realizations 

1( ),..., ( ),Nu u 
  

and denote it by aij; in what follows 
equality (9) takes the form 
 

 (10) 
 

By force of the linear independence of the random 
field realizations in the random sense and due to a prop-
erty of linear independent elements in a space with a 
scalar product, Eq. (10) holds under the condition 
 

 (11) 
 

Using matrix notation, Eq. (11) can be rewritten 
in the form 
 

 (12) 
 

where Ñ = (C1, , CN)T, (aji) is the NN Gram ma-
trix, and 1( ).ij   


 

Thus, after defining the structure of the basis func-
tions in the form of a linear combination of realizations 
of the random process, the coefficients of these linear 
combinations fall out as a result of solving the full 
eigenvalue problem for a positive definite Gram matrix 
(aji) of order N, and this problem is quite realizable in 
practice by means of algebraic numerical methods. 

It is easy to show by substituting expression (8) 

in Eq. (3) that to normalize the functions 1( ) ,
k

u
 
 
 


 

taking into account the obtained values {Cl}N, it is 
necessary to change  to 1/2 in Eq. (9). 

The construction of linear models (1) with the 
help of the optimal (in the mean-squared sense) Kar-
hunen-Loeve basis requires solving equations (12), as a 
rule, by numerical methods. However, the difficulties 
of its practical realization limit the extensive applica-
tion of that basis because in that case it is necessary to 
solve the full eigenvalue problem for positive definite 
matrices whose order exceeds 102. This forces one to 
relinquish direct methods of solving the problem of 
finding a Karhunen-Loeve basis (Eq. (12)) and to con-
struct iterative algorithms which, while decreasing the 
number of operations needed to obtain an approximate 
result, lead only asymptotically to the optimal solu-
tion. Another advantage of iterative algorithms is the 
fact that they allow “the most important” basis func-
tions, the number of which may be not large, to be 
found in the first place. 

One of the ways to surmount the above difficulty 
at the price of rejecting the optimality in the mean-
square sense is represented by the algorithm of con-
structing an adapted basis,10 using the idea of or-
thogonalizing a sequence of linearly Independent func-
tions under the condition that the choice of the next 
function is subject to a certain criterion. In this case a 
uniform approximation of the process is performed by  
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a linear manifold of a low dimension. The iterativity 
of this basis construction procedure allows one to use 
an algorithm for transforming spaces of large dimen-
sions up to 105. 

In what follows an iterative algorithm is proposed 
for constructing a basis adapted in the mean-square 
sense (AMS basis). In the given case the choice of the 
next basis function is based on the minimization of a 
mean-square goodness criterion (2). 

Let us approximate the realizations of the initial de-
scription of ( )u

 
 by means of elements of the linear 

span Gk, given by the orthonormal basis { ( )} ,j ku


 as 

follows: take for the next basis function ( )j u


 (j = 1, 

, k) that one amongst sj orthonormal functions ( ),
js

u


 

obtained via the Gram-Schmidt orthogonalization proce-
dure12 applied to the sample functions 1( ),u

 
 , ( )M u

 
 

 

 
 

 (13) 
 

for which 
 

 
 

 (14) 
 
where as the mathematical expectation we use a sam-
ple estimate associated with Eq. (6). 

The process of finding basis functions is com-
pleted at the k-th step as soon as one reaches a given 
accuracy 2

kE  in the approximation of the random vec-

tor field by a linear combination of k basic elements 
from Gk. Then, from the theorem on projecting the 
elements ( )u

 
 of a Hilbert space onto Gk, we have  

 

 (15) 
 

where {Xj}k is a set of random numbers defined by the 
formula 
 

 (16) 
 

The accuracy of the approximation in expression 
(15) is determined (in practice, estimates of M[  ] 
over the same sample are used) as follows: 
 

 (17) 
 

where j are in decreasing order (1  2    k) by 
virtue of their construction, and, to the maximum ex-
tent allowed by the set { ( )} ,j Nu

 
 they "exhaust" the 

rms error 2
kE  of the approximation to the ensemble 

{ ( )}u
 

 by a linear manifold from Gk. As is well 

known, an optimal (in the rms sense) basis { ( )}j ku
 

  

with the corresponding eigenvalue spectrum {j}k of 
the Karhunen-Loeve expansion is found by optimi-
zating criterion (17) over { ( )} ,j ku


 taking into account 

the orthonormalizability of the latter functions. The 
problem of successive maximization of the positive 
definite quadratic form (14) on unit spheres within 
subspaces orthogonal to the functions { ( )} ,j ku


 ob-

tained via procedure (13), j = 1, , k, 0 0, 


 leads 

to the same basis { ( )} .j ku  The latter circumstance 

indicates that the AMS basis { ( )}j ku


 obtained using 

algorithm (13), (14) becomes a Karhunen-Loeve basis 
asymptotically with increasing N under certain as-
sumptions on the ensemble { ( )}.u

 
 Indeed, the algo-

rithm which we have in fact considered is based on 
stochastic principles of an extremum search11 with the 
only peculiarity being that the “test” functions in this 
case are elements of a sample. Therefore it is necessary 
to ensure convergence of the ‘search procedure that the 
sample value distribution function be positive in the 
"direction" of searched-for solutions. If this fact is not 
established a priori, then one can Judge the quality of 
the obtained solution by the magnitude of the estimate 
of the error of approximation (17): 
 

 
 

It should be noted that algorithms obtained for 
continuous fields remain valid for fields given by indi-
vidual readings in a discrete regular or a stochastic 
(but fixed) observation network; however, in these 
cases the integration is replaced to the corresponding 
summation over a set of points at which the field realiza-
tions are recorded. It is not complicated to perform all 
of the modifications of the algorithms connected with 
representation of the fields in a domain D with variable 
boundaries, moving boundaries, or to distinguish in a 
linear model (1) a temporal variable of the form 
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