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Ways for developing faster adaptive control of the wavefront of a light beam are 
considered. Optimal laws are obtained, which describe the variation of the control 
constants as functions of the distance to the receiver, the initial beam power, and the 
detuning of the optimizing parameters from their extreme values. 

 
 

In recent years the problem of compensating 
light beam amplitude-phase distortions1–13 has re-
ceived close study. In the publications which deal 
with this problem in particular, the influence of dif-
ferent factors on the compensation quality is consid-
ered, such as, for example, nonlinearity of the light 
beam propagation process, medium turbulence, and 
the receiver parameters. One of the main characteris-
tics of the adaptive system which determines the 
compensation quality is its speed. Obviously, if the 
time it takes to reach the optimum light beam pa-
rameters exceeds the typical time of variation in the 
state of the medium and the receiver, the adaptive 
control will be inefficient. Therefore, it is necessary 
to organize the control by algorithms possessing the 
highest possible speed. Part I of this article (the pre-
sent paper) is devoted mainly to the construction of 
algorithms with the choice of optimum control con-
stants while tuning the adaptive system according to 
the gradient method. Part II (the present Journal) 
deals with problems of the practical realization of the 
proposed principles of varying the constants, some 
other algorithms different from those based on gradi-
ent methods, as well as questions of increasing the 
speed of multichannel systems. 

As is well known, the speed of adaptive control 
can be increased in several ways: first, by decreasing 
the number of parameters being optimized; second, by 
selecting a reasonable starting approximation of these 
parameters close to their optimum values; third, by 
constructing “fast" algorithms for control, i.e., pos-
sessing maximum speed. Obviously the last way is 
more universal. It includes the improvement of a widely 
used algorithm based on the gradient method and the 
development of new algorithms different from but more 
effective than those based on the gradient method. 

It should be noted that the increments of the pa-
rameters with a regular optimization step are deter-
mined by the distance from the receiver and the pa-
rameters of the receiver (size, reflection coefficient), the 
characteristics of the light beam (power, radius, etc.), 
as well as by the geometry of the adaptive mirror (the 

location of the control elements, the drives). Thus, 
the construction of a "fast" algorithm should be real-
ized in two stages. The development of new algo-
rithms or the improvement of the gradient method 
should be aimed eliminating the dependence of the 
convergence and the speed of the iteration process for 
generating the optical parameters on the initial power 
of the optical radiation, the distance from the re-
ceiver, and its size and reflection coefficient, i.e., on 
the parameters that are independent of the adaptive 
mirror (the active element of a system). This consti-
tutes the first stage. At the second stage one should 
take into account the dependence of the rate of re-
sponse of the system on the geometry of the control-
ling elements (the control channels). Thus, in the 
proposed approach the control constants are repre-
sented as the products of two functions, one of which 
depends on the light beam parameters (power, etc.), 
the medium, and the receiver, while the second de-
pends on the location of the driving gears (the geometry 
of the mirror). In this part of the paper we shall dwell 
on the creation of the optimal (from the viewpoint of 
speed control) algorithms without taking into account 
the geometry of the active element (the mirror). 

In general11 the control of the vector of the light 
beam parameters being optimized in the multidither 
algorithm is realized according to the law 
 

 (1) 
 
where D is an operator determined by the adaptive 

system response function; t is dimensionless time; 

  

is the matrix of control constants; J is a functional 
chosen to estimate the quality of the compensations of 
the distortions, e.g., a functional of the power re-
ceived at the target;  is a function of the functional 
J, the choice of which determines the control algo-
rithm, in particular when applying the gradient 
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method  = J; L is the distance to the moving re-
ceiver measured In units of the diffraction length 
ld = ka2/2, here k is the wave number; a is the initial 
radius of the beam; a characterizes the degree to 
which the initial beam power exceeds the beam self-
focusing power. Note that the majority of the papers 
consider a two-point algorithm for which 

1( ) ( ) ( ) ,N ND t t t           
    

 where  is the time 
of generation of the control signal. Equation (1) takes 
account of the time delays dm and dc in obtaining the 
information about the receiver and the medium and 
about the variation of the quality criterion, respec-
tively. It should be emphasized that some problems of 
beam focusing control in regular nonlinear media are 
considered in Refs. 12 and 14 in the presence of delay 
and inertia, and the compensation of phase fluctua-
tions — in Ref. 8, where the extrapolation (predic-
tion) of the state of the medium is proposed to im-
prove the compensation quality. However, it is well 
known15 that extrapolation errors rapidly accumulate 
with growth of the time interval of prediction. There-
fore, an increase of the speed of the adaptive system 
(a decrease of the prediction time interval) is neces-
sary to achieve efficient correction of the light beam 
distortions. In Ref. 16 on the basis of simplified mod-
els for the case of a stationary medium the principles 
of varying the control constant of focusing of a light 
beam wavefront are proposed. These principles al-
lowed us to achieve the maximum speed in the nu-
merical experiments of optimization of the wavefront 
using the gradient method. A method is given below 
for selecting the control constants for cases different 
from those considered in Ref. 16 for cases of compen-
sation of nonlinear distortions as well as a mathe-
matical basis for the principles of varying the control 
constants obtained in Ref. 16. The treatment relies on 
the theory of Iterative methods.17 

For the sake of an example, let us first consider 
the process of light beam focusing (8) onto a station-
ary receiver (L(t) = L = const) placed in a Kerr 
nonlinear medium with an adaptive system without 
delay (dm = dc = 0) tuned according to the criterion 
(J = Ja) of minimum width of the light beam at the 
receiver. Using the aberrationless description of the 
propagation of the light beam it is not difficult to 
calculate its width In the plane of the receiver and to 
obtain from Eq. (1) the following principle of a step-
by-step variation of the focusing18 while optimizing  
according to the gradient method ( = J). 
 

 (2) 
 

or 
 

 (2) 
 
where N+1 is the control constant (for the case in 
which the light beam passes through a layer of a sta-
tionary medium with the thermal nonlinearity mecha-

nism,  in Eq. (2) should be replaced by 1n   here 

n1 is the additional light beam divergence introduced 
by the layer). It should be noted that Eq. (2) corre-
sponds to the canonical form of recording in the two-
layer iteration schemes,17 for which the methods of 
selection of the optimum parameters N+1 were devel-
oped, that realize the maximum rate of convergence of 
the iteration methods (in our case the attainment of 
optimum focusing opt = 1/L). Having introduced 
the detuning of the beam focusing from its optimum 
value N = N – 1/L, we obtain from Eq. (2) 
 

 (3) 
 

Choosing the parameter N+1 from the condition that 
2

1N  be minimum, we can determine its value that 
gives the maximum speed of the algorithm 
 

 (4) 
 

The method which determines N+1 in this way is 
called the minimum discrepancy method. It is impor-
tant to emphasize that the optimum value of the con-
trol constant determined directly from the solution of 
the difference equation (2) coincides with the value of 
opt in Eq. (4). 

The optimum value of the control constant can 
also be determined from the condition of orthogonal-
ity of N+1 to N (the method of steepest descent). It 
is essential that Eq. (4) is valid for moving receivers. 
In this case L becomes a function of the iteration 
L  LN, and at the optimum value of N+1 quasistatic 
control of focusing (N+1 = 1/LN) is realized (see also 
Ref. 16). Consequently, the current value of the fo-
cusing is determined by the previous receiver location. 
If the moving receiver speed or the speed of the adap-
tive system is such that the receiver succeeds in get-
ting out of the region of longitudinal focus, then the 
quality of focusing will be low. In this case after 
achieving the maximum speed of response it is neces-
sary to extrapolate16 the receiver location (i.e., to 
"predict" in terms of Ref. 8). 

In practice control based on the criterion of peak 
intensity J = Jm at the receiver turns out to be more 
important. Then, instead of Eq. (2) we obtain from 
Eq. (1)18 
 

 (5) 
 

or, rewriting it in canonical form. 
 

 
 

 (5) 
 

Note that according to the classification used in the 
theory of iterative methods,17 Eq. (5) represents a 
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non-stationary implicit one-step iterative process, 
which makes the construction of optimal algorithms 
more difficult. It is important that both A and BN are 
strictly greater than 0, for which reason the represen-
tations of the algorithm in the forms (5) and (2) are 
equivalent. According to the correction method17 the 
optimal principle for varying the control constant 
follows from Eq. (5) by varying the receiver location 
and the power of the light beam and its focusing 
 

 (6) 
 
(where 0 is the Initial value of the control constant), 
which agrees completely with the expression obtained 
in Ref. 16. 

Thus, the principles of varying the control constant 
by varying the focusing obtained in Ref. 16 are optimal 
and cannot be further improved if the focusing algo-
rithm based on the gradient method is used. They en-
able one in this case to obtain the maximum speed. It 
should also be emphasized that Eq. (6) is valid in the 
case of non-stationary thermal self-focusing of the opti-
cal radiation in a stationary medium, with the one 

change that instead of  one should use 
0

( ) .
Nt

t dt  

The above method for selecting the optimum val-
ues of the control constants gives a scheme for con-
structing opt under other conditions along the propaga-
tion path. As an example let us consider the case of 
compensation of the lateral shift of the center of gravity 
of a light beam which has passed through a layer of a 
moving medium with a thermal nonlinearity mecha-
nism. An analysis of control of focusing and the slope 
of the wavefront for moving and stationary receivers is 
given in Refs. 16 and 19, respectively. Below the opti-
mal principles of variation of ( )

1
x

N  are written down. 

According to Ref. 19, control of the slope ( )x
N  of 

the light beam wavefront (for the correction of its 
lateral shift during tuning of the adaptive system 
with respect to the position of the center of gravity of 
the beam relative to the center of the receiving aper-
ture Ja, the light beam intensity in the center of the 
target Jt, and that fraction of the power Jp received 
in the aperture with radius R) is realized according to 
the principles 
 

(7) 
 

where 2 2 2(1 ( ))N N NLf L L       is the square of 
the dimensionless beam width in the plane of the re-
ceiver located a distance L behind the layer of 
nonlinear medium;  is the additional wavefront 
slope acquired by the beam in this layer; and 

( ) .x
N N       Note that the radius R of the receiv-

ing aperture is normalized by , and in writing down 
Eq. (7) it is supposed that the direction of motion of 
the medium coincides with the X axis. Rewriting 
Eq. (7) in the form of Eq. (5) and making use of the 
correction method, we get the following principles of 
variation of the control constants 
 

 (8) 
 

for estimating the quality of beam center position 
correction according to the criterion Jt; 
 

 (8) 
 
for estimating the quality of correction according to 
the criterion Jp; 

( )
0
x  is the starting value of the con-

trol constant. 
As can be seen from Eqs. (8) and (8), the opti-

mal variation of the control constant depends expo-
nentially on the beam width if the additional wave-
front slope is compensated. At the same time, if the 
optimization of focusing is carried out with the purpose 
of achieving the maximum intensity at the receiver 
(without specifying the point it will be attained at), the 
control algorithm for  will naturally be independent 
of the value of the slope of the wavefront (the beam 
center shift), of course, if the beam is located within 
the receiver. Therefore, it is reasonable to first optimize 

( ).x  When estimating the focusing optimization from 
the on-axis beam intensity, the adaptation processes  
and (x) obey the same exponential dependence. 

Note that the characteristics of the beam and the 
medium enter into Eqs. (8) and (8). In a thin nonlin-
ear layer the additional wavefront slope can be evalu-
ated exactly. When the receiver is located within the 
bulk of the nonlinear medium such estimation will be 
too rough. Therefore, in practice. If compensating the 
beam center shift in a thin nonlinear layer, Eqs. (8) 
and (8) should be modified by omitting the  term in 
the exponent. The initial value of the control constant 
should be significantly increased (by a factor of ap-
proximately 2 2exp( )L  ). Note that L is the value of 

the beam center shift along the X axis due to the influ-
ence of the nonlinear layer. Therefore, when the re-
ceiver is located within the bulk of the nonlinear me-
dium, ( )

0
x  should be increased by a factor of 2exp( ),cx  

where xc is the coor dinate of the center of the initially 
collimated beam in the plane of the receiver. Since in  
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general it is unknown beforehand, it is impossible, gen-
erally speaking, to choose the value of (x) required for 
the maximum convergence of the iteration process. 
However, the minimum beam center shift is easy to 
estimate if one uses the geometric optics approximation 
for the propagation of a rectangularly shaped beam,20 
because within the class of beams with the same power 
without a dip in the initial intensity distribution on the 
axis, the hypo-Gaussian beam whose profile is close to 
uniform21 experiences a minimum beam center shift in a 
moving medium with a thermal nonlinearity mecha-
nism. Hypertubular beams have a similar property.22 
Taking into account the above-mentioned fact, in place 
of Eq. (8) we obtain the following expression: 
 

 
 

which is valid for moving receivers as well. For 
Eq. (8) one can write down a similar expression. 

Recall that the case of the on-axis beam focusing 
was considered above. But in the case of focusing con-
trol along the Y axis a pre-exponential factor — the 
dimensionless width of the beam along the Y axis — 
will appear in Eqs. (8) and (8). Consequently, the 
constant in the wavefront slope control channel will 
depend on the current value of the beam focusing along 
the Y axis. The other considerations and conclusions 
remain in force. 

Thus, optimal principles of varying the control 
constants have been constructed for the purpose of 
achieving maximum speed of control of the adaptive 
system by the lowest wavefront modes. The proposed 
approach is applicable to the optimization of any num-
ber of parameters, in particular, for flexible mirrors 
with many degrees of freedom. 
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