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The concept of isoplanatism is considered as applied to problems of adaptive correction of 

atmospheric distortions. Wave aberrations presented in the form of series expansion in terms  
of Zernike polynomials are used to calculate the angular correlation of modal components of phase 
fluctuations of optical radiation propagating in the turbulent atmosphere. The size of the isoplanatic 
area in an adaptive optical system is determined. The influence of the model of vertical profile of the 
structure parameter of atmospheric refractive index fluctuations, the outer scale of atmospheric 
turbulence, and the size of receiving aperture of a telescopic system are analyzed. 

 

Introduction 
 

In the general imaging theory, the strict or global 
isoplanatism of any imaging device consists in the 
invariance to a shift of the imaging operator.1 The 
imaging operator for linear devices, as is well-known, 
can be expressed through the point spread function 
(PSF), which in the case of strict isoplanatism is 
independent of generalized coordinates on an object 
and an image. Since the strict global isoplanatism is 
very rare in practice, the device operation is considered 
in isoplanatic zones,2 the field of view is divided into. 
  The condition of isoplanatism is that the 

derivative of PSF with respect to the object 

displacement is zero. The norm of this derivative can 
serve a measure of anisoplanatism. The goal of the 
theory of isoplanatism in optical systems is just to 
estimate this parameter. The point spread function of 
optical systems is fully determined by aberrations, as 
well as the shape, size, and transmittance of its 
pupil.3 If the last factors are considered to remain 
constant accurate to the second order of smallness upon 

displacement of an object point, then anisoplanatism 
is determined by changes of aberrations. This leads to 
the use of the term “isoplanatic angle” in the case of 
ordinary optical systems for separation of the angular 
region in the field of view, in which aberrations of an 
optical system remain unchanged and, consequently, 
the optical transfer function (OTF) is constant.4 

The classical theory of isoplanatism2,4–6
 is 

developed for the axial zone of centered optical 
systems with an image at a finite distance, which 
restrict the application of this concept in designing 
modern optoelectronic systems, such as atmospheric 
adaptive optics systems, in which aberrations are 
caused by the action of the atmospheric turbulence. 
Since such systems depend strongly on the quality of 
the information used, the angular anisoplanatism 
becomes a factor imposing serious restrictions on the 
field of view of adaptive optical systems and on the 
operation of such systems as a whole.7 

Certainly, the concept of isoplanatism, which is 
already traditional, in application to adaptive optical 
systems calls for refinement. In the first turn, this is 
connected with the fact that nearly always we deal 
with the partial phase adaptive correction. The concept 
of isoplanatic angle for an atmospheric path was 
introduced in the early 1980s.8 In this case, the 
isoplanatic angle play the role of, for example, the 
extreme allowed angle of the position of a reference 
source (several sources), or it determines the maximal 
angular size of an object, which can be corrected by 
the system.9,10 

 

Isoplanatic angle 
 

The standard definition of the atmospheric 

isoplanatic angle of the whole atmospheric depth7 is 
written as  
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If we determine this parameter through the coherence 
radius of a plane wave11 
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then obtain  
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where k = 2π/λ is the wave number of radiation; ξ is 
altitude; hξ has a dimension of length and determines 
the thickness of some effective atmospheric layer: 
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profile of the structure parameter of refractive index 
fluctuations. Consequently, the isoplanatic angle can 
be defined as an angle, at which the coherence radius 
is seen within the effective atmospheric layer from 
the distance equal to the thickness of this layer. 

Results of numerical calculations under conditions 
of the vertical propagation for different models of the 
vertical profile of Ñ 

2

n(ξ) [Refs. 11–13] are generalized 
in Table (λ = 0.5 µm). Let us analyze the influence 
of the telescope height on these parameters (Fig. 1). 
 

Model of the vertical profile  
of turbulence  

r
pl, m θ0, µrad hξ, m

Model for Cerro Paranal 
Observatory, Chili  0.1595 7.64546 665
Model for Mauna Kea 
Observatory, Hawaii  0.1349 11.3797 1558
Model for AMOS Observatory, 
Maui, Hawaii  0.1802 17.5750 932
Hufnagel-Valley 5/7 model  0.0502 6.89989 989
Greenwood model 0.1292 13.7097 1687
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Fig. 1. Coherence radius of a plane wave (a), effective 
thickness of the turbulent atmosphere (b), and isoplanatic 
angle (c) as functions of the telescope height h for different 
models of the turbulence profile: AMOS model (1), Mauna 
Kea model (2), Greenwood model (3), and HV 5/7 model (4). 

One can see that the increase of the telescope 
height leads to the increase in the coherence radius 
and the effective height, but does not influence the 
isoplanatic angle. The obtained result indicates that 
the traditional determination of the isoplanatic angle 
for adaptive optical systems does not reflect the actual 
pattern of isoplanatism and calls for refinement. In 
particular, because of the difference in geometric 
characteristics (path length in this case), differences 
in the optical beam propagation should exist. It is 
obvious that at the partial correction, the statistics of 
residual wavefront aberrations is different, because the 

power spectrum decreases, and the isoplanatic angle 

should increase. In addition, this definition ignores the 

aperture size and the influence of the outer scale of 
turbulence, which, as was shown in numerous papers, 
causes residual distortions in adaptive optical systems. 
 

Angular correlation  
of phase fluctuations 

 
Definition of isoplanatism in the classical theory 

as uniformity of aberrations of an optical system over 
the field leads to the necessity to describe it with the 
aid of the aberration function as a function of ray 
coordinates. In geometric optics, it is either wave 
aberration or eikonal.5 

In atmospheric adaptive optical systems, this role 
is played by wave aberrations caused by the 

atmospheric turbulence. This means that the size of 
the isoplanatic area in such a system is determined by 
the existence of correlation between phase distortions 
of the radiation wave front in the turbulent 

atmosphere. That is why we calculate the angular 
correlation of modal components of phase fluctuations, 
since nearly always we deal with a partial correction, 
and consider the practical application of our results 
to the operation of adaptive optical systems. 

For this purpose, we represent the function of 
wave aberration in the form of series expansion in 

terms of Zernike polynomials, which contain the 

information on spatial properties of phase fluctuations. 
Let the optical radiation from two extraterrestrial 
sources be incident on the telescope aperture with the 
diameter D at the zero angle and at the angle θ. The 
phase represented as series expansion in terms of 
orthogonal Zernike polynomials for the wave front 
incident at a zero angle has the form14 
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while the wave front at the angular distance θ is 
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Using the property of orthogonality of polynomials 
at a circle, that is,  
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where ρ1 and ρ2 characterize the position in the plane, 
R is the radius of the telescope aperture, and δjj′ is the 
Kronecker delta, we can write for the expansion 

coefficients 
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Using the representation of a random process in 
the form of the Fourier–Stieltjes integral, taking into 
account the delta correlation of spectral components, 
and integrating over the angular coordinate,8 we 
obtain the following equation for the correlation 

function: 

2

2

0 22

0

2 2( )
( ) 8 d ( ) .

h hJ
B F J J

D D

∞

ξ ξ⎡ ⎤θ θ⎛ ⎞ ⎛ ⎞χ
θ = π χ χ χ χ χ⎢ ⎥⎜ ⎟ ⎜ ⎟

χ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∓  (9) 

We use the following model of the turbulent spectrum: 
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where Ñ 

2
n(ξ) is the vertical profile of the structure 

parameter of the refractive index; χ is the wave 
number for turbulent inhomogeneities. 

As a result, we obtain the following equation for 
the coefficient of angular correlation bx, y(θ) = B(θ)/B(0) 
of random wavefront tilts, which manifest themselves 
as an image jitter in astronomic observations15: 
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where J0 and J2 are the Bessel functions. In this 
equation, the minus sign corresponds to the 

longitudinal (or parallel) separation angle θ, that is, 
the tilt along the axis X, while the plus sign 
corresponds to the tilt along the axis Y. 

We use the following model of the vertical 
profile of Ñ 

2
n(ξ): 

 ξ=

2 2

0( ) exp[– / ].
n n

C h C h h  (12) 

In the case of the infinite outer scale, from Eq. (11) 
after integration we obtain the following equations 
for wavefront tilts along axes Õ and Y: 
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where the parameter γ = θhξ/D plays the role of an 
argument; pFq[…] is the generalized hypergeometric 
function. 

 

Influence of the outer scale  

of turbulence 
 
The outer scale of the inertion interval of 

turbulence determines mostly the variance of jitter of 
the image centroid.16 Therefore, the consideration of 
the turbulence outer scale is important in designing the 
simplest systems for adaptive optics correcting  
the wavefront tilt. In any case, for modern telescopes 
the ratio of the aperture diameter to the outer scale 
of the atmospheric turbulence already cannot be 
considered as infinitely small.  

Then the following parameters represent the scale 
of the problem: 
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introduced in Ref. 17 as 
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It can be substituted for the vertical profile of the 
turbulence outer scale. One of the causes for 
introduction of this characteristic is the possibility  
to simplify considerably mathematical calculations.  
It should be noted that numerical calculations by 
Eq. (15) for the considered model profiles of 
atmospheric turbulence yield the mean value χ0 = 0.1. 
The angular correlation of two positions of wavefront 
tilts along axes X and Y in the case of the turbulence 
infinite outer scale and with the finiteness of the 
turbulence outer scale taken into account is shown  
in Fig. 2. 
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Fig. 2. Angular correlation coefficient for two positions of 
wavefront tilts at different values of the effective outer 
scale of turbulence: Y (1), X (2), χ = 0; Y (3), χ = 0.1;  
Y (4), χ = 0.3; X (5), χ = 0.1; X (6), χ = 0.3. 

 

The results obtained show that the turbulence 
outer scale strictly affects the angular correlation of 
lower modal components of phase fluctuations and, 
consequently, the size of the isoplanatic area of an 
adaptive optical system. It could be noted that there 
exist some differences between two tilt positions, and 
the correlation in the parallel separation angle exceeds 
that in the longitudinal coordinate, while the angle 
of the curves can be considered as identical. 

The values obtained with the infinite outer scale 
are much higher than those in the case of the model, 
dependent on the outer scale. This restricts the useful 
area of the system’s field of view. It should be 
emphasized that this effect influences the temporal 
characteristics of the system as well. As a result, it 
may become necessary to increase significantly (by 
several times) the working passband. 

 

Correlation of higher modal 
components of the wave front  

 
Let us consider the angular correlation of higher 

modal components of phase fluctuations, namely, coma 
and defocusing. In this case, the analytical equation for 

the correlation coefficient (11) should be rewritten as 
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Figure 3 shows the normalized correlation 
functions for the first three aberrations, namely, two 
tilt positions, defocusing, and coma in the case of the 

infinite outer scale of turbulence. One can see that 
the behavior of the correlation coefficient strictly 
depends on the order of aberrations and decreases as 
this order increases. As expected, the lower-order 
polynomials are correlated much stronger than those 
of a higher order. 
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Fig. 3. Angular correlation coefficient for different modal 
components of phase fluctuations: two positions of wavefront 
tilts Y (1) and X (2), defocusing (3), and coma (4). 

 

The angle, within which the wavefront tilts 

remain correlated, is greater than the angle for higher-
order aberrations. This favors the increase of “sky 
coverage” for the operation of simplest systems of 
adaptive optics, which correct only tilts. In general, it 
can be concluded that the size of the isoplanatic area 
is equivalent to the order of the aberration corrected 
by adaptive optics. This certainly should be taken 

into account in the modal correction of atmospheric 
distortions. 

 

Influence of the aperture size 
 

Let us analyze the influence of the aperture size 
of a telescopic system. For this purpose, we represent 
hξ according to Eq. (3) and obtain the following 
equation for the parameter of the problem: 

 

 pl
000.31( )( ).h D r Dξγ = θ = θ θ  (18) 

Below, we consider how the dependence of the 
angular correlation coefficient changes for the fixed 
ratio pl

0 .D r  Then the ratio of the angular separation 
between the optical beams to the traditional isoplanatic 
angle becomes the parameter of the problem. Figure 4 
illustrates this dependence for the defocusing and the 
tilt along the axis Õ. The calculation was performed 
for the ratios pl

0 20D r =  and 50. It should be noted 
that in modern telescopes the aperture size tens times 
exceeds the coherence radius for the visible region. 
  The aperture size obviously influences the size of 
the area, in which phase fluctuations are correlated. 
The angular correlation increases, as the aperture size 
increases. The correlation is much higher for the tilt, 
and as the angle between the beams increases, it 
decreases more slowly than in the case of higher-
order aberrations. 



938   Atmos. Oceanic Opt.  /December  2008/  Vol. 21,  No. 12 L.A. Bol’basova and V.P. Lukin 
 

 

 

2 5 10 20 50 Log[θ/θ0]1 

0.02 

0.05 

0.2 

0.5 

1

0.1 

Logb[θ] 

1

2

3

4 

 
Fig. 4. Angular correlation coefficient for different modal 
components of phase fluctuations: tilt along the axis Õ 

D/r  = 50 (1); D/r 0
pl

 = 20 (2) and defocusing D/r 0
pl

 = 50 (3); 

D/r 0
pl
 = 20 (4). 

 

Conclusions 

 

The presented attempt to refine the concept of 
isoplanatism in application to problems of adaptive 
correction of atmospheric distortions through 

consideration of the atmospheric turbulence as a 
random phase aberration in a telescopic system has 
shown that the size of the isoplanatic area should be 
better characterized by the allowable angular separation, 
determined by the size of the area, in which phase 

distortions of optical radiation, propagating in the 

turbulent atmosphere, are correlated, rather than the 
isoplanatic angle traditionally used in adaptive optics. 
  The results obtained from analytical and 

numerical studies indicate that this angular separation 
and, consequently, the size of the isoplanatic area 
depend directly on the order of phase aberrations of 
the wave front to be compensated by an adaptive 

optical system. The size of the isoplanatic area 

decreases, if the finite outer scale of the atmospheric 
turbulence is taken into account, and increases, if the 
aperture size increases. 

In conclusion, it should be noted that this 

approach allows us not only to estimate the allowed 
angular separation between a reference source and an 
observed area and to select the optimal angular position 
of several reference sources, but also to analyze the 
characteristics, determining the speed of an adaptive 
optical system. 
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