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Within the phenomenological approach with the use of multifocus model of filamentation, the 
equation for the Wigner function is derived to describe the propagation of high-power femtosecond 
laser pulse. In the approximation of the Gaussian profile of the mean intensity of laser radiation, the 
behavior of the laser beam effective radius is investigated.   

 

Introduction 

The propagation of high-power femtosecond 
laser pulses of terawatt and multiterawatt power1,2 is 
accompanied by the self-action, giving rise to 
multiple filamentation. At a great number of 
filaments, multiple filamentation takes place in the 
so-called regime of optical turbulence,3 which is a 
particular case of the strong turbulence. This regime 
is characterized by high-intensity structures of the 
optical field located in small spatial areas against a 
low-intensity background.4  

The numerical investigation of the laser beam 
self-action in the multiple filamentation regime is 
described in Refs. 1 and 3.  

Even with modern computers, it is quite 
problematic to study numerically the propagation of 
laser beams with fluctuating initial conditions and an 
initial radius of up to 100 mm to kilometer-long path 
lengths under conditions of the turbulent 
atmosphere.5 In the cross sections of such beams, 
hundreds of filaments are formed.2 Thus, it is 
important to develop a phenomenological method 
predicting the evolution of the main observed 
parameters of a laser beam, such as the energy, 
effective radius, and effective angular divergence, 
with the use of a finite number of parameters, 
determined from a numerical or laboratory 
experiment.  

In Ref. 6 based on numerical calculations, the 
main stages of evolution of effective parameters in 
the regular regime of propagation of an axially 
symmetric laser beam were determined. In Ref. 7 
based on the model of moving identical focuses,8 the 
dependence of the effective radius on initial 
parameters and the light energy absorbed by the 
medium through the phenomenological parameter γ 
characterizing the transverse structure of a filament 
was established. 

In this paper being a logical continuation of 
Ref. 7, the stochastic nonlinear Schrödinger equation 
(SNSE) is used in the multifocus model of 
filamentation to derive the equation for the Wigner 
function. This equation describes the propagation of a 
high-power laser pulse of a femtosecond duration in 
the regime of optical turbulence, characterized by the 
Bespalov–Talanov transverse instability and used in 
derivation of equations for effective parameters.  

In solution of the derived nonclosed equations 
for effective parameters of a laser beam, it was 
proposed to introduce a phenomenological parameter 
Icr. This parameter characterizes the macroscopic 
intensity, at which the regime of optical turbulence 
takes place. To close the obtained system of 
equations for effective parameters of a laser beam, 
the macroscopic intensity of a laser beam was 
approximated by the Gaussian profile. The resultant 
relationships for averaged values of effective 
parameters and the corresponding averaged 
distribution of filaments agree with the commonly 
used estimates of the number of filaments.1,3  

Equation for the Wigner function 

The stochastic nonlinear Schrödinger equation 
has the following form: 
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with the random initial condition  
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Here k0 is the wave number at the central frequency 
of radiation ω0; n0 is the refractive index of air; 
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ω ω=
′′ = ∂ γω  is the coefficient of the expansion of 

the wave number  
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0 0 0( ) ( ) /2.gk k v k
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′′≈ + ω − ω + ω − ω   

In Eq. (1), the nonlinear permittivity is represented 
as a sum 

 plNL I Iε = ε + εker( ) ( ) ,   

where 

 ker k( ) ,I Iε = ε  pl cas e 2I tε = η ρ( ) ( ) / ;   

ε�  is the fluctuating part of the permittivity in the 

atmosphere; αNL(I) is the coefficient of nonlinear 
absorption of the medium (linear losses are 
neglected); ηcas is the rate of cascade ionization of a 
gas; ρe(t) is the concentration of free electrons 
determined from the evolution equation5–7; εker(I) is 
the Kerr nonlinearity of the cubic type9; εpl is the 
permittivity of plasma; εk is the coefficient of the 
nonlinear addition to n0. 

Let us consider the spatiotemporal coherence 
function – the second-order moment  
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 2( )/ ;′= +R r r  2( )/ ;′= −ρ r r  

 ′= + 2( )/ ;t t t  2t t′τ = −( )/ ;  

(r, t) and (r′, t′) are two arbitrary points in space 
and time. 

Differentiating Eq. (2) with respect to z and 
taking into account Eq. (1), we find 
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From the two-point field function ψ�, we 

separate the regular part, namely, the coherence 
function Γ and the fluctuating part, namely, the 
function of a random perturbation δψ� : 

 .I I Iδψ ≡ ψ −Γ→ = +δ� � �

� �  

Then equation (3) takes the following form: 
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Using the procedure of the Fourier transform 

denoted hereinafter as ˆ,F  we pass to the spectral 

density of the Wigner function (brightness function) 
defined as follows:  
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where ε0 is the permittivity of air; n is a unit vector. 

Let I I≡
�

 have a rather smooth spatiotemporal 

profile, then we can neglect higher derivatives with 

respect to R and t  in Eq. (4). From here, we have 
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Then we pass from J
ω
 to the Wigner function 
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∞
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= ω∫  and, neglecting the variance, obtain the 

equation for J 
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Here, the following designations are introduced: 
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The function D determines the diffusion 
blooming of a laser beam. The function U is 
connected with field moments of the fourth order 
and, in particular, characterizes intensity fluctuations 
leading to the modulation instability of a laser beam 
and providing for the self-focusing of inhomogeneities 
of a certain size. Finally, the function F is expressed 
through nonlinear terms, whose contribution is 
significant only in the region of local focuses 
(filaments), and determines the absorption in a local 
focus, as well as its diffraction and defocusing 
properties.  

For the further consideration, we accept the 
approximation of local focuses with identical 
properties. In this case, the function F can be 
represented in the following form: 

 F z t N z t f≈R n R n�( , , ) ( , , ) ( ).,   (9) 

The function f(n) can be found from either 
numerical or laboratory experiment. It characterizes 
the scattering and absorbing properties of a local 
focus. It can be determined through functions εpl and 
αNL in the region of the maximal intensity of the 

light field. The parameters N z tR� ( , , )  are the 

average concentrations of local focuses at each point 
of space and time. 

 

Evolution of effective parameters 

Below we will consider the following effective 
parameters6: 

the energy transfer coefficient  
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laser beam 
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From Eq. (7) taking into account Eqs. (8) and 
(9), we obtain the following equations for effective 
parameters:  
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is the transverse component of the Pointing vector; 
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χ ≡ − ∫ n n( )  is the coefficient characterizing 

energy losses by a laser pulse due to absorption at 
one local focus. The last term in Eq. (12) is neglected 
below, because it is small. 

Differentiating Eq. (12) again, we find 
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The function HU, characterizing the integral 
influence of intensity fluctuation of the light field, 
reaches the maximum in the region of multiple 
filamentation, where it is estimated as follows:  

(13)

(14b)
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The parameter HD corresponds to the diffusion 

blooming of a laser beam. Let the length of the 
diffusion blooming be much shorter than the length 
of manifestation of nonlinear effects for a high-power 
laser pulse of the femtosecond duration, which allows 
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Here 2
d 0f E′γ ≡ ∫ n n n( ) / ( ) characterizes the rate of 

increment of the squared angular divergence of a 
laser beam along the longitudinal coordinate after 
propagation of one local focus, which is determined 
both by diffraction effects upon energy absorption in 
a local focus and by defocusing properties in the 
formed plasma. The last term in Eq. (15a), 
responsible for the diffusion blooming, will be 
neglected by the above reasons. The third term in the 
right-hand side of Eq. (15a) can be estimated as 

k d dfI N tχε ∫ R . If we take it into account, the 

parameter γ′ becomes slightly re-determined, and this 
change can be ignored. 

The further analysis is possible with some 
additional assumptions, for example, the hypothesis 
of critical intensity: we assume that as the 
macroscopic intensity achieves some threshold value 
Icr, the state of maximal transverse instability takes 
place, at which the mean number of focuses δN in the 
laser beam cross section per unit area δS (focus 
density) with the intensity crI I≥  is determined as  

 cr crSN S P P S I Pδδ δ = δ =/ ( / )/ / ,  

where Pcr ≈ 3.2 ⋅ 109 W is the critical power of the 
self-focusing in air.9 

It is quite natural that isolated filaments are 
generated accidentally even before the laser pulse 
reaches the maximal intensity. However, we neglect 
the influence of these events on the evolution of 
effective parameters of a laser pulse. Starting only 
from the distance, at which the laser radiation 
intensity achieves the critical value, we believe that 
the mass filament generation takes place, and this 
point of the path is considered as a beginning of 
filamentation. For the qualitative analysis, we 
assume that the condition of the macroscopic (large-
scale) Gaussiness is fulfilled, namely, the 
macroscopic intensity (averaged over spatial scales, 
which are much greater than the size of filaments) of 
a laser beam in the process of its propagation keeps 
the Gaussian profile with a constant duration tp:  
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zmf is the coordinate of the beginning of 

filamentation; the parameter 0 /′γ ≡ γ χ  is found in 

Ref. 7 5

0( 1 3 10 )−

γ ≈ ⋅. ; P0 and R0 are the average 

values of the power and radius of a laser beam, 
respectively. 

The initial conditions for the system (16) at the 
entrance into the filamentation zone such as 
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Here H0 is the so-called Hamilton function of a laser 
beam in a Kerr medium9; V0 corresponds to the initial 
curvature of the phase front. 

In the approximation of the Gaussian profile of 
the laser pulse intensity, we find the filamentation 
point zmf from the condition that the maximal 
intensity of a laser beam I(z) achieves the critical 
value Icr: 
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The solution of Eq. (16) with the initial 
conditions, determined from Eqs. (17) and (18), can 
be easily found numerically. The model parameters 
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χ ≈ ⋅.  were 
determined from the comparison with results of 
numerical calculation for a laser beam with the 
radius R0 = 2 mm and the initial power 

0 cr 88P Pη≡ =/  in the regime of multiple 
filamentation1

 at the beginning and at the end of 
multiple filamentation (Fig. 1). 
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Fig. 1 Energy transfer coefficient Te, normalized initial 
value of the squared effective radius Re;

2
, and the number of 

filaments Nf along the propagation path at R0 = 2 mm and 
P0 = 88Pcr. 

 
If we determine the average number of filaments 

Nf  through the density of focuses in the central 
temporal cross section of a laser pulse: 

( ) ( ,0, )d ,fN z N z

∞

−∞

≡ ∫ R R  then in the Gauss 

approximation we find 2

e e( / ).fN T Y T=η − As can be 

seen from Figs. 1 and  2, the obtained distribution of 
filaments along the propagation path agrees with the 
used estimate of the number of filaments Nf ≈ P0/Pf, 
where Pf ≈ (3–5)Pcr [Ref. 1]. This fact indicates the 
adequacy of the proposed model of multiple 
filamentation. 
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Fig. 2. Propagation coefficient after passage of the global 
focus as a function of η = P0/Pcr for the regime of multiple 
filamentation at R0 = 2 mm: results obtained by numerical 
solution of the system of Eq. (18) (squares) and Eq. (21) 
(solid curve). 
 

Figure 2 shows the propagation coefficient M2 
[Refs. 6 and 7] after passage of the global focus as a 
function of the initial power. For comparison of the 
regimes of single and multiple filamentation, figure 3 
shows the filamentation length Lf, function Te, and  

waist radius 2
.
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Fig. 3. Energy transfer coefficient Te, effective value of the 
squared waist radius 2

w
R  normalized to 2

0R , and 
filamentation length normalized to the Rayleigh length 
Lf/LR as functions of η = P0/Pcr for the regimes of 
multiple filamentation (subscripted by m) (for illustration, 
the points obtained from numerical experiment are 
connected by straight lines) and single filamentation at 
R0 = 1 mm (subscripted by s).  

 

Figure 4 shows the propagation coefficient for 
the regimes of single 2

sM  and multiple 2

mM  
filamentation calculated by the approximation 
equations (19):  

 2 2

s 0 0 0 s 02 RM R H L k C Rη = + η( , ) /( ) ( ) ,  (19a) 

 2 2 2

m 0 0 0 m 02 RM R H L k C Rη = + η−β( , ) / ( ) ( ),   (19b)  

where 

0
s 1 mm

4
R

C
=

≈ ; 

m
9C ≈ ; 

2
4 mm

−β ≈  are the 

introduced empirical constants, characterizing the 
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dependence of the increment of the squared angular 
divergence after the passage through the nonlinear 
layer on η. It should be noted that equation (19b) is 

true only under the condition 2

m 0
C Rη β� . This 

restriction is a consequence of the used 
approximation of the Gaussian profile of the laser 
beam intensity. 
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Fig. 4. Propagation coefficient after the passage of the 
point of global focus as a function of η = P0/Pcr for the 
regime of single (solid curve) and multiple (dash curve) 
filamentation at R0 = 1 mm. 
 

It follows from Fig. 3 that as 0 crP Pη= /  
increases, the waist radius decreases linearly with the 
distance, whereas the filamentation length increases, 
and the energy transfer coefficient decreases. 

Conclusions 

The equation for the Wigner function (7) is 
proposed based on SNSE within the 
phenomenological approach with the use of the 
multifocus filamentation model for the description of 
propagation of a high-power femtosecond laser pulse 
in the regime of the optical turbulence. The 
formulated equations for the Wigner function have 
been used to derive equations for effective parameters 
of a laser beam, studied using the hypothesis on the 
critical intensity for the regime of the optical 
turbulence in the approximation of the Gaussian 
intensity profile (16). The filament distribution, 
obtained from the numerical solution of Eqs. (18)  
 
 

and (19) along the propagation path, agrees with the 
commonly used estimate of the filament number as 
Nf ≈ P0/Pf, where Pf ≈ (3–5)Pcr. This fact indicates 
the adequacy of the model and the used 
approximations. In particular, it confirms the 
hypothesis that the critical intensity achieving 

12 2
2 5 10 W/cm⋅.  exists for the optical turbulence 

regime.  
It has been found that regularities in the 

evolution of effective parameters in the regimes of 
multiple and single filamentation are qualitatively 
similar.6 In particular, the squared propagation 
coefficient after passage of the global focus was 
found to depend linearly on the initial power of the 
laser pulse (19). 
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