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The new optimization method of the phase front gauge topology is developed, using the basis 
of Zernike polynomials and the polar coordinate system. The optimization criteria of the topology of 
phase front gauge are offered allowing essential enhancement of the accuracy characteristics of phase 
front restoration. 

 

Introduction 

One of the most effective (sometimes in 
combination with others) ways to attenuate the 
disturbing atmospheric effect on operation of an 
optical system is the use of adaptive methods and 
systems. Ideas providing the basis for development of 
adaptive systems have been supposed recently.1  

Phase front gauges are used as measuring 
instruments in adaptive optical phase-conjugation 
systems at compensation of nonsteady phase 
distortions arising at radiation propagation in an 
optically inhomogeneous medium.3–7 They are key 
elements in many modern radiation management and 
correction systems, and their capabilities mainly 
determine parameters of the systems and range of 
solved problems.   

When developing adaptive optical phase-
conjugation systems, indirect measurements of phase 
distribution are usually carried out at the aperture of 
an adaptive optical system.5–7 Then these 
measurements are converted into the basis of elastic 
mirror response functions by a numerical method. 
Each of known algorithms has advantages and 
disadvantages; however, final specifications of phase 
front gauges, developed on the basis of the 
algorithms, depend on specific implementation of 
gauges. So, further improvement of such devices is of 
interest. 

In this work, we describe an optimization 
method of the topology of a phase front gauge using 
the basis of Zernike polynomials for approximation.  
  

1. Phase front restoration algorithm 

The well-known Hartmann test1 first suggested 
to control telescopic optics was later used for 
adaptive optics. Now it is the most common type of 
phase front gauge. An image of entrance pupil is 
projected to the lens matrix. All images are formed at 
one photoreceiver, usually CCD matrix. When an 
arriving wave front is plane, all images are situated 
in a regular grid, determined by the lens matrix 

geometry. When the wave front distorts, images shift 
from their true positions. 

Note that the Karhunen–Loeve expansion is a 
universal expansion answering a number of optimum 
conditions.1 It is characterized by the following 
properties causing its optimality: minimal mean 
square error when keeping a preset number of terms 
in infinite expansion, maximum obtained information 
on a function defined by a truncated series at any 
number of keeping terms in comparison with any 
other expansion, and noncorrelatedness of expansion 
coefficients, which simplifies further use of expansion 
results and their analysis. But this analytical 
expansion is hardly representable; therefore, the 
system of Zernike polynomials, sufficiently close to 
it, is usually1 used in practice.   

To approximate the response function of flexible 
adaptive mirror, use the system of Zernike 
polynomials orthogonal (orthonormalized) inside a 
unit circle or a circle of R in radius and representable 
in polar coordinates r, θ [Refs. 1, 2, and 7]: 
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Variables n and m are always integer and satisfy 
the condition n ≤ m, n – | m | is even. The subscript j 
is the sequence mode number and depends on n and 
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m. The orthogonality condition in a circle of unit 
radius has the form 
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where δj′ is the Kronecker delta.  
A gauge-measured phase front has the following 

form in the Zernike basis: 
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where cj is the coefficients phase front expansion in 
terms of Zernike polinomials (signals from the phase 
front gauge output). The number of polynomials N in 
the expansion is determined using the equation1 
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where D is the aperture diameter, r0 is the correlation 
radius; St is the Strehl number. 

In known devices, local slopes of a phase front 
at the aperture point, proportional to quantities of 
types 
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are to be measured with quadrant photoreceivers.3–7 

Here 1, ;i L=  1, ;j K=  L K×  is the number of 

quadrant photoreceivers of a gauge; Φ(xi, yj) is the 
phase value at the gauge aperture. Then these 
measured values are converted to the phase values 
Φ(xi, yj) or coefficients aj and used to manage the 
feedback loop of an adaptive optics system. 

In contrast to known methods, where local 
slopes are to be measured in x and y planes 
proportional to the corresponding derivatives, here 
one measures tangential local and radial slopes 
proportional to quantities of the types ∂Φ(ri, θi)mes/∂θ 

and ∂Φ(ri, θi)mes/∂r, = 1, ,i M  respectively. 

To measure these quantities, we propose to use 
dual-element photoreceivers arranged at aperture 
points on concentric circles, and the boundary 
between dual-element photoreceivers coincides with 
the radius of a corresponding circle or normal to it 
(Fig. 1). 

Again, the solution of wave front restoration 
problem can be considered in the following 
statement. Let the Hartmann sensor measures the 
local slopes of phase front ∂Φ(ri, θi)mes/∂θ at points 
with the coordinates ri, θi, which can be chosen 
arbitrary. For definiteness, consider points arranged, 
e.g., as in Fig. 1a.  

For phase restoration, apply the least square 
method (LSM). In this case, the corresponding 
quadratic form of LSM is 
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where Ì + 1 is the number of phase-front measuring 
points (photoreceivers). 

The true values of phase gradient can be  
written as 
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To calculate Eq. (6) in an explicit form, 
equation (1) is to be used. Substituting Eq. (6) in 
Eq. (5), obtain 
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Fig. 1. Tangential (a) and radial (b) arrangement of photoreceivers at the aperture of phase front gauge. 
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Find the coefficients àj from M + 1 linear 
equations equating the quadratic partial derivatives 
J1 with respect to aj with zero: 
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where B is the matrix with the coefficients  

 ,

0

( , ) ( , )
;

M
j i i i ik

k j

i

Z r Z r
b

=

∂ θ ∂ θ
=

∂θ ∂θ
∑  

A is the row-vector of target coefficients of Zernike 
polynomials àj; Ñ is the column-vector of the right 
part  
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The solution of system (8) takes the form 
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As has been shown in analysis, the structure of 
matrix B–1 (positions of zero and non-zero elements) 
remains invariable at arbitrary chosen arrangement of 
dual-element photoreceiver points; only values of 
these elements vary. 

Reasoning similarly, a phase front gauge can be 
built on the base of radial derivatives (Fig. 1b). 

The corresponding quadratic form of LSM is the 
following in this case: 
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where Ì + 1 is the number of phase front measuring 
points.  

True values of phase gradient can be presented 
as 
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To calculate Eq. (11) in an explicit form, 
equation (1) is to be used. Substituting Eq. (11) in 
Eq. (10), obtain 
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Find the coefficients àj from M linear equations 
equating the quadratic partial derivatives J2 with 
respect to aj with zero: 
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where B is the matrix with the coefficients  
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A is the row-vector of target coefficients of Zernike 
polynomials àj; Ñ is the column-vector of the right 
part  
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The solution of system (13) has the form 

 1
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−
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Thus, matrices B–1 or 1

1B
− for a preset 

arrangement of points can be calculated in advance, 
while the algorithm for calculation of expansion 
coefficients in the Zernike basis of the vector A 
reduces to calculation of the vector of right part of C 

and matrix multiplication by the matrix B–1 or 1

1B
− . 

 Based on the considered phase front restoration 
method, the structure of a corresponding gauge can 
be built. This structure is shown in Fig. 2 and 
realizes the algorithm in the following way. A 
distorted wave front is focused by lens matrix 1 to 
matrix of dual-element photoreceivers 2. In this case, 
in any local zone, restricted by the lens aperture, the 
focused spot shifts relative to the optical axis 
depending on the local phase front slope, 

proportional to quantities of the form 
∂Φ θ

∂θ
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( , )i ir

 

at points with the coordinates ri, θi. 
Presence of phase front distortions results in 

difference signals at the output of photoreceivers 2, 
which are amplified by differential amplifiers 3 
output signals of which are proportional to the 

quantities 
∂Φ θ

∂θ
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. Then, signals from the 

output of differential amplifiers 3 feed to the 
summation units, where signals are calculated 
proportional to the elements of column-vector of the 
right part cj.  

In this case, the amplification constants Ka of 
the scale amplifiers of summation unit are calculated 
according to the equation 
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Fig. 2. Block-diagram of a gauge of tangential type: lens (1); matrix of dual-element photoreceivers (2); differential 
amplifiers (3); scale amplifiers of the summation unit (4); summators of the summation unit (5); groups of scale amplifiers (6); 
second group of summators (7). 

 
Output signals of summation units 5, proportional 

to Ñj, arrive to the inputs of a group of scale 
amplifiers, coefficients of amplification of which are 
calculated as follows: 

 1
, .kj k jK b
−

=  (16) 

Only nonzero elements are considered in this 
case. Output signals of the second scale amplifiers 6 
arrive to the inputs of summators 7, from outputs of 
which signals aj, proportional to the expansion 
coefficients in the Zernike basis, are output. 

Output signals can be used directly for feed to 
the input of the flexible piezoelectric mirror of 
adaptive optical system, which simplifies its design 
essentially.  

2. Optimization of the phase front 
gauge topology  

When implementing a phase front gauge and at 
arbitrary choice of photoreceiver positions, the 
weight coefficients of amplification are maximal in 
modulus. This results in much smaller signal-to-noise 
ratio in these channels in comparison with others, 
which causes essential loss in phase front gauge 
performance. According to investigations, these 
weight coefficients depend on arrangement of 
photoreceivers. An optimal arrangement is to be 

chosen with accounting for the maximum of the 
following criterion: 
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for a tangential (see Fig. 4) and 
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for radial phase front gauge.  
Consider an example of optimization of the 

phase front gauge topology. 
Find the number of Zernike polynomials by 

Eq. (4). Thus, e.g., at D = 0.05 m and Lt = 5 km, 
maximum of N does not exceed 12–16 according to 
Eq. (4). Let N = 16 in our case. To choose 
coordinates of optimal arrangement of dual-element 
photoreceivers, located at aperture points on a 
concentric circle of r in radius, use criterion (17). 
The points a, b, c, and d in Fig. 3 are the optimized 
polar coordinates of gauge photoreceivers on a circle 
with r1 = 0.2; the points e, f, g, h, i, j, k, l, m, and 
n are the coordinates of gauge photoreceivers on a 
circle with r4 = 0.8. Again, the optimized coordinates 
of quadrant photoreceivers on circles with r2 = 0.4, 
r3 = 0.6, and r5 = 1 are chosen in a similar way. 
Finally, we obtain an optimized topology of a 
tangential phase front gauge. 
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Fig. 3. Choice of optimal arrangement of photoreceivers. 
 

Reasoning by analogy, we can optimize the 
topology of a radial phase front gauge with the use of 
Eq. (18). 

3. Estimate of the noise error of phase 
front restoration 

When estimating the efficiency of adaptive 
optical systems against Gaussian noises the 
arrangement of photoreceivers at aperture points on 
concentric circles of gauges (see Fig. 1) should be 
taken into account, as well as at optimized 
arrangement of photoreceivers (Fig. 4). 

 

 

Fig. 4. Optimized arrangement of tangential photoreceivers 
at the aperture. 

 

The dependence of variance of the phase front 
restoration error Dr on noise variance Dn has been also 
studied in gauge channels for the topology (Fig. 1)  
 

and optimized topology (Fig. 4) at N = 16. The 
study results are shown in Fig. 5. 

 

 
Fig. 5. Variance of phase front restoration. 

 

Analysis of the results has shown that the 
suggested optimization of the phase front gauge 
topology allows an essential increase in accuracy of 
phase front restoration. 

Conclusion 

A new algorithm is suggested for phase front 
restoration in the Zernike basis with the use of polar 
coordinates. A new structure scheme of phase front 
gauge is worked out, as well as an optimization 
method of the phase front gauge topology, which 
provides a possibility to enhance the accuracy 
characteristics of the gauge. Optimization criteria of 
the phase front gauge topology (17) and (18) are 
introduced, which allow an essential increase in 
accuracy of phase front restoration. 
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