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Nonresonant interaction of nonpolar molecules with femtosecond laser pulse is considered 

using the time-dependent perturbation theory. The solution for the density matrix is obtained in the 
fourth order of the perturbation; and a general expression for the field energy loss is found. The rigid 
rotor model is used to numerically calculate absorption by molecular nitrogen. 
 

Introduction 

A nonresonant monochromatic field effectively 
does not cause any direct transitions in a quant 
system, because corresponding probabilities are 
rapidly oscillating time functions, and the energy 
conservation law in quantum mechanics results in 
vanishing of such probabilities at t→∞ .   

Nevertheless, the nonresonant field at a 
sufficient intensity is able to significantly affect 
atoms and molecules trough exciting multi-quantum 
transitions occurring via intermediate virtual states. 
Multi-photon absorption, two-quantum processes of 
stimulated Raman scattering type, multi-photon 
ionization and dissociation can be considered as 
examples. 

The nonresonant interaction with a laser pulse 
has its own features. While the carrier pulse 
frequency is far from atomic-frequency resonances, 
the amplitude spectral content can include 
frequencies, resonant to one or several of them, 
which can cause excitation of corresponding 
transitions.1 A pulse spectrum is determined by its 
length, hence, the length is the key parameter, 
determining which transitions are most effectively 
excited in the interaction. Besides, different pulse 
length scales correspond to motion of different 
degrees of freedom of a quantum system with their 
specific character. This requires the use of different 
approximations and models to describe interactions 
versus pulse length.  

In this work, we consider interactions between 
nonpolar molecules and pulses of length from 
hundreds to tens of femtoseconds. In this scale, 
characteristic electron travel times can be considered 
as rapid. This allows the approximation of slowly 
varying amplitude to be used and interaction with an 
electronic subsystem to be taken into account via its 
polarizability at the field carrier frequency. The 
consideration is limited to the fourth order of 
temporal perturbation theory, since the first 
nonvanishing correction to population levels of the 
electronic ground state appears in this order.   

1. Molecules in a nonresonant field  

Consider a molecule in the pulse field described 
by the electric field strength 

0

1

2
t E t i t i t= −Ω + − −ΩE r r e kr e kr*( , ) ( , )[ exp( ( ) exp( ( )],  

  (1) 

where the real amplitude E0(r, t) determines the time 
shape of the pulse and field strength distribution in a 
plane, normal to the propagation direction; e is the 
complex polarization vector: 

 1⋅ =e e* .    (2) 

In the long-wave approximation, the Hamiltonian of 
the molecule in the field has the known form 

 0H H V t= + ( );   (3) 

 V t = −dE( ) ,    (4) 

where the dependence on kr is to be omitted in 
Eq. (1) for the field E. The carrier pulse frequency Ω 
is nonresonant to the frequencies of inter-electronic 
transitions ωnn′

 much larger then rovibrational ones. 
The field amplitude E0(r, t) is a slowly varying time 
function in the sense of fulfilling the condition 

 1,
nn′

ω ±Ω τ�   (5)  

where τ is the characteristic pulse width. This 
condition allows expressing field interaction effects 
via dynamic polarizabilities of the ground electronic 
state at the carrier pulse frequency, as well as 
neglecting real processes of absorption to excited 
electronic states, which could occur in the presence 
in the spectrum of an envelope of frequencies, 
resonant  to detuning  from the electronic  transition. 
 Consider an interaction with molecules having 
inversion centers, for which dipole transitions in the 
ground electronic state are forbidden by the selection 
rules: 
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 0V ′μ μ = .  (6) 

The interaction with field is supposed to be 
quite weak; therefore, the consideration can be 
carried out within the perturbation theory, and 
ionization and dissociation processes can be 
neglected. Assume that the pulse length is much 
shorter than characteristic times of the molecular 
system relaxation. At the initial moment (t → – ∞), 
the molecule is at the thermodynamically equilibrium 
state, described by the density matrix 

 0

0

1
H

Z
ρ = −βexp( ),  / .β = B1 k T   (7) 

In this case, temperatures are such that excited 
electronic states are efficiently unpopulated: 

 1
e

Eβ � .   (8) 

Assume also that multi-photon resonances with 
electronic transitions do not occur in the considered 
orders of the perturbation theory. 

Under the above assumptions, the processes of 
first order with respect to the field are absent in the 
ground state, and the main interaction mechanism 
will be processes of the type of the stimulated Raman 
scattering through virtual electronic states. 

2. Motion equations 

Write the motion equation for the molecule 
matrix density in interaction representation, 
neglecting all relaxation processes because of short 
pulse length: 

 i t V t tρ = ρ��� �� ( ) [ ( ), ( )].   (9) 

Isolate evolutions of ground and excited electronic 
states in Eq. (9). To do this, introduce projectors  

 1g e g e

n

P P n n P P

µ

= µ µ = + =∑ ∑, , .   (10) 

Hereinafter, excited electronic states are enumerated 
with Latin letters and levels of ground state – with 
Greek ones. The identity  

 = + + +gg ge eg eeA A A A A   (11) 

is correct for an arbitrary functional A. Here  

  ij i jA PAP i j e g= =, , , .  (12) 

Substituting the density matrix in the form of 
Eq. (11), obtain the following set of equations: 

 gg ge eg ge egi V Vρ = ρ −ρ� ��� � �� ,   (13à) 

 ge ge ee ge ee gg gei V V Vρ = ρ −ρ −ρ
� � ��� � � �� ,   (13b) 

 ee eg ge eg ge ee ee ee eei V V V Vρ = ρ − ρ + ρ −ρ� � � ��� � � � �� .   (13c) 

It is evident from Eq. (13a) that evolution of the 
ground state is determined by the coherence created 
by the field between the ground and excited states. It 
follows from symmetry grounds that for systems with 
centers of inversion the series of perturbation theory 
for the density matrix of the ground state contain 
only even degrees of interaction operator, because 
matrix elements in Eq. (13a) are diagonal with 
respect to electronic state, and dipole transitions 
occur with the change of parity. The set of 
equations (13) can be simplified based on the 
following physical grounds. All molecules are in the 
electronic ground state at the considered 
temperatures, therefore, excited levels can be 
populated only due to transitions from the ground 
state; such processes are negligible in the absence of 
multi-photon resonances. Note that the first 
correction to the ground-state density matrix, caused 
by population of excited states (13c), appears only in 
the fourth order. Therefore, from set (13), assuming 
the absence of multi-photon resonances up to the 
fourth order, obtain a set of equations, describing 
evolution of the ground state ggρ�  and the coherence 

geρ� :   

 gg ge eg ge egi V Vρ = ρ −ρ� ��� � �� ,   (14à) 

 ge ge ee gg gei V Vρ = −ρ −ρ� ��� � �� .   (14b) 

Let us solve equations (14à) and (14b) by the 
iterative method. The initial population of excited 
electronic states can be neglected with a good 

accuracy, and the ground state density matrix ρ
0

gg  

can be taken as an initial condition. For definiteness, 
thermodynamic equilibrium position (7) was chosen 
as an initial condition. Nevertheless, the 
consideration is valid at any position, if excited 
levels are unpopulated and the initial coherence 
between the ground and excited states is absent.  

3. Density matrix 

In the first order of perturbation theory, the 
field interaction results in the coherence between the 
electronic ground and excited states: 

 1 0
d

t

n n

i
t tV tμ μμ μ

−∞

′ ′ρ = ρ ∫ ��
�

( )( ) ( ).   (15) 

Using the slowness condition (5), it is possible to 
take the field amplitude out of the integral in 
Eq. (15) and obtain the following equation: 

1 0

0

1
e

2

n

i t i t
i t

n n

n n

t E t
µ

− Ω Ω
ω

μ μμ μ

μ μ

⎡ ⎤
ρ = − ρ +⎢ ⎥

ω −Ω ω +Ω⎢ ⎥⎣ ⎦

e e
d r�

�

( ) *e e
( ) ( , ) .   (16) 

The coherence (16) results in appearance of molecule 
average dipole moment, oscillating at the pulse 
carrier frequency2:  
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0

Sp

1
e e

2

i i

i t i t
ij j ij j

j

d t t d

E t e e
− Ω ∗ ∗ Ω

μμ μμ μμ

μ

= ρ =

= ρ α + α∑ r

( )( ) ( )

( , )[( ) ( ) ],
  

(17)
 

where  

 
0 0

1 i n j n j n i n
ij

n nn

d d d d′ ′μ μ μ μ
′μμ

⎡ ⎤
α = +⎢ ⎥

ω −Ω ω +Ω⎣ ⎦
∑

�

( ) ( ) ( ) ( )
( )   (18) 

is the dynamic polarizability tensor of the electronic 
ground state. 

We neglected the contribution of vibrational and 

rotational energies to the total energy, taking 
nµ

ω�  

equal to the difference of electron energies: 

  0n n
E E

µ
ω ≈ −� .    (19) 

The coherence (16) exists only for the time equal to 
pulse length and then is violated. 

In the second order of perturbation theory, 
obtain  

  ( ) *
( ) [ ( ) ( )]

2 0 0

1 1 1d

t

i
t t H t H t′ ′ ′ ′μμ μ μ μμ μ μ′μμ

−∞

⎛ ⎞ρ = − δ ρ − ρ δ⎜ ⎟
⎝ ⎠ ∫

� ��
�

   (20) 

for the ground state. The Schrödinger functional Hδ  
has the form 

2

0

4

n n n n

n n
n

E t
H

′ ′μ μ μ μ
′μμ

′ ′μ μ

⎡ ⋅ ⋅ ⋅ ⋅
δ =− + +⎢

ω −Ω ω +Ω⎢⎣
∑

d e d e d e d er

�

* *( )( ) ( )( )( , )
 

 
2 2

e
i t i t

n n n n

n n

− Ω Ω
′ ′μ μ μ μ

′ ′μ μ

⎤⋅ ⋅ ⋅ ⋅
+ + ⎥

ω −Ω ω +Ω ⎥⎦

d e d e d e d e* *( )( ) ( )( )e
.   (21) 

Two first items in Eq. (21) describe processes of 
the type of the stimulated Raman scattering, while 
oscillating terms – two-photon absorption and 
emission.3 Oscillated terms are usually neglected in 
the majority of optical problems using the rotary-
wave approximation (secular approximation).4 Note, 
that this approximation could be violated for very 
short pulses, which have frequencies resonant to 

′μμω ± Ω2  in the envelope spectrum. In this case, 

oscillations do not appear during interaction, and 
two last items have the same order that those 
describing the light scattering. In this work, we 

consider such processes, assuming 2 1′μμω ± Ω τ� .  

The functional δH is non-Hermitian because of 
its construction as a product of two interaction 
operators heterogeneous in time, which do not 
commutate in general. Separating Hermitian and 
anti-Hermitian parts, the operator can be  
represented via the shift δE and the absorption 
δΓ operators4,5:   

 
2

i
H Eδ =δ − δΓ

�
,   (22) 

where  

  
1

2
E H H

+

δ = δ + δ( );  
i

H H
+

δΓ = δ −δ
�

( ).   (23) 

In this case, equation (14a) takes the form 

 { }0 0

2
gg gg gg

i
i Eρ = δ ρ − δΓ ρ

��� ��� [ , ] , .   (24) 

The first term in Eq. (24) describes unitary evolution 
of the density matrix, and the second one – 
departure from (arrival to) the ground state due to 
two-photon absorption (emission). 

The δE operator becomes Hermitian and δΓ − 
zero in the approximation, at which field detuning 
from frequencies of electronic transitions is much 
greater than ranges of rovibrational structure:  

 
n n n′μ μ μω −ω ω ±Ω� ,   (25) 

The use of approximation (25) justifies reducing the 
set (13) to the simplified set (14). It follows from 
preservation of density matrix trace that an 
analogous component of arrival of the same order is 
to be omitted in Eq. (13c) for excited electronic 
states. 

The Hδ  operator in approximation (25) is 
reduced to the well-known equation for effective 
Hamiltonian, used in problems of optical pumping 
and molecule orientation1,4–6: 

 
2

0

4
ij i j

E t
H e e′ ′μμ μμδ =− α

r *( , )
( ) .   (26) 

For following calculations, it is convenient to 
represent this operator in the form reflecting its tensor 
structure with respect to the angular momentum 
operator:  

 
2

0

4

E t
H T

′μμ′μμδ =−
r( , )

.   (27) 

Here the operator T is defined by the equation 

 { }( )
2

0

1T
κκ κ

′ ′μμ μμ

κ=

= − ⋅ ⊗∑ e e*( ) ,α    (28) 

where ⋅(... ...)  means the scalar product of irreducible 

tensors and κ

⊗{... ...}  – irreducible tensor product of κ 

order of two irreducible tensors.7 An irreducible 
polarizability tensor has the form  

 { }
0 0

1 1 1
n n

n n
n

κκ
κ

′ ′μμ μ μ

⎡ ⎤−
= ⊗ +⎢ ⎥

ω −Ω ω +Ω⎣ ⎦
∑ d d

�

( )
.α   (29) 
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Effective Hamiltonian (27) describes transitions 
between different sublevels of the electronic ground 
state; transitions with change of vibrational state 
occur only when accounting for dependence of 
polarizability on vibrational coordinates. The scalar 
part (κ = 0) describes transitions with invariable 
rotational quantum numbers. The anti-symmetric part 
(κ = 1) is equal to zero for molecules with 
nondegenerate ground state2 and in interaction with 
linear-polarized light. Rules of the rotational-number 
selection for the symmetric part (κ = 2) are the same 
as those for quadrupole transitions.  

Finally, the following equation for the ground 
state density matrix in the second order is obtained: 

 2 0

4

i
t I t T′ ′ ′μμ μμ μμ′μμρ =− Δρr�

�

( )( ) ( , ) ,   (30) 

where 0

′μ μ
Δρ  is the difference between equilibrium 

populations of the levels μ′ and μ: 

 0 0 0

′μ μ ′μ μ μμ
′Δρ = ρ −ρ ;   (31) 

 12

1 0 1d e

t

i t
I t t E t

′μμω
′μμ

−∞

= ∫r r( , ) ( , ) .    (32) 

The density matrix 2
t′μμρ�

( )( )  describes coherence 

between sublevels of the ground state, which keeps 
after pulse propagation (t → ∞) and turns out to be 
proportional to the Fourier transform of the squared 

pulse amplitude 2

0
E ′μμωr

( )( , ) :  

 2 2 0

0
e

4

i ti
E T

µµω
′ ′μμ μμ′μμ ′μμ

ρ ∞ =− ω Δρr

�

'( ) ( )( ) ( , ) .   (33) 

Parameter 2

0
E ′μμωr

( )( , )  plays the part of resonance 

factor – the field effectively excites transitions for 

which 1.′μμω τ ≤  

The correction to the diagonal matrix elements 
is equal to zero in this approximation. To determine 
the correction, consider next orders of the 
perturbation theory. 

Describe briefly the sense of the next corrections 
to ρge without writing them explicitly. The second-

order correction 2

geρ
( )  for centrally symmetrical media 

does not contribute to the dielectric susceptibility 
stipulated by the dipole current. It should be taken 
into account for finding the contribution of higher 
current multipoles, for which transitions between 
electron states occur without change  of parity, e.g., 
the contribution of quadrupole moment. The third-

order correction 31

geρ
( , ),  resulting from the first term in 

Eq. (14b), determines cubic susceptibility and results 
in the third harmonic generation. Its contribution to 
the ground state reduces to a term proportional to 
the nonresonant second hyperpolarizability (γ) of the 

ground state. The correction 3 2

geρ
( , )  from the second 

term in Eq. (14b) results in an addition to the cubic 
susceptibility, expressed via squared polarizability α. 
All the above listed coherences are violated after the 
pulse has passed. 

Neglecting the contribution concerned with the 
second hyper-polarizability, obtain the following 
equation in the fourth order for populations of the 
ground state: 

 4 0

2

1

16
t I t I t T T

′μ μ
′ ′ ′μμ μμ μ μ μμ μ μ′ ′μ μ

′μ

ρ = + Δρ∑ r r�

�

( )( ) ( ( , ) ( , )) ) ,   (34) 

where 

 
1

1 22 2

1 0 1 2 0 2d e d e

tt

i t i t
I t t E t t E t

′μλ λμω ωλ
′μμ

−∞ −∞

= ∫ ∫r r r( , ) ( , ) ( , ) .   (35) 

Decomposition of 2

0E tr( , )  in Eq. (35) into the 

Fourier integral, yields the equation for populations 
after pulse propagation: 

 
2

4 2 0

02

1

16
E T′ ′ ′μμ μμ μ μ μ μ

′μ

ρ ∞ = ω Δρ∑ r

�

( ) ( )( ) ( , ) .    (36) 

4. Energy loss 

Determine from Eq. (36) the field energy loss 
due to interaction with a molecule. The molecule-
absorbed energy during the field interaction is 
defined as  

 

4 4

0

2
2 0

0

Sp

1

32

Q H E

E T

μ μμ

μ

′ ′ ′ ′μμ μμ μ μ μ μ

′μμ

Δ = ρ ∞ = ρ =

= ω ω Δρ

∑

∑

r

r

�

( ) ( )

( )

( ) ( )

( , ) .

  

(37)

 

Assuming that the energy is independent of the 
projection of angular momentum m  on the 
quantization axis, it is possible to sum over m  
implicitly in Eq. (37) and obtain the following 
equation: 

 

{ } { }( )

1 2 1 2

2 2 1 1 2 2 1 2 2 1 1

2
2

1 1 2 2

0

2
2 0

0

1

32 2 1
v v j j

v j v j v j v j v j v j

v j v j
Q

E

κ=

κ κ

κ

Δ =
κ +

⊗ ⋅ ⊗ ω ω Δρ

α

×

×

∑ ∑r

e e e e r

�

( )

( )

* * ( , ) ,

  

(38)

 

where subscripts v and j relate to vibrational and 
rotational states of the ground electron term, 
respectively; according to the Wigner–Eckart 
theorem, it is accepted that  

 
1

1 1 1 2 2 2

1 2

1 1 2 2

1 2

1

q

j m

v j m v j m

j j
v j v j

m q m

κ

− κ

=

κ⎛ ⎞
= − ⎜ ⎟

−⎝ ⎠
( ) .

α

α

  

(39)
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As an example, consider energy loss in interaction of 
a molecule of rigid rotor type with a linear-polarized 
pulse. Assuming nondegenerate ground state of the 
molecule and neglecting polarizability dependence on 
vibrational coordinates, obtain the contribution of 
only the second-rank tensor in Eq. (38): 

 
2

2 2 0

0

1

240
jj jj j j

jj

Q j j E
′ ′ ′

′

′Δ = ω ω Δρ∑r r

�

( )( ) ( , ) .α   (40) 

Calculating the reduced matrix element 2j j′α , 

obtain 

 2 2

000

2
2 1

3

j jj j j C ′

′ ′= Δα +( ) ,α   (41) 

where 

zz xx
Δα = α −α  is the polarizability of anisotropy  

in the molecular coordinates.  
Summation in Eq. (40) is carried out over 

rotational states with j′ = j ± 2 owing to selection 

rules for the Wigner coefficients 2

000

j j
C

'
 [Ref. 8] and 

the population difference 0

j j
Δρ ' . 

Summing over j′, obtain 

 
2

2
2 0

2 20

0

1 2
60

e
j j j j

j

B
Q j j E r

∞

+ +

=

Δ
Δ = + + ω Δρ∑r

�

( )
, ,

( )
( ) ( )( ) ( , ) ,

α

 

   (42) 

where Be is the rotational constant of the molecule.  
 

 ( / ) ( / )( , ) ⊥− τ −

=

2 2
0

0 0 e e
t r

E t E
r

r e   (43)  

for a linear-polarized Gaussian pulse. Integrating over 
the beam cross-section, obtain the ratio of energy, 
absorbed by the medium during interaction, to the 
unit length: 

 
2 4

0 0( )
,

480
e

Q r nB SE

x

Δ πΔα τ
=

Δ �
  (44) 

where S is defined as 

 2

0

1
1 2 2 3e

j

S j j B j
Z

∞

=

= + + − + τ ×∑( )( )exp{ [ ( ) ] }  

  1 2 3
e e

B j j B j j× −β + − −β + +� �{exp[ ( )] exp[ ( )( )]}.   (45) 

Generally speaking, it is necessary to take into 
account a degeneracy order of rotational levels, 
connected with nuclear spins,9 in the statistical sum 
Z and in summation over j in Eq. (45) when 
considering molecules with the same nuclei. Thus, 
e.g., summation in Eq. (45) for the O2 molecule is to 
carry out over only odd j. For the below-considered 
nitrogen molecule N2 within high temperatures 

1eB kT� �( / ) , formula (45) can be used without 

change. 
Expressing the pulse amplitude in terms of total 

field energy10: 

 
2

2 2

0 0

2
d d

4 32
f

S

c
E E t t S c r E

∞

⊥

−∞

π

= = τ

π ∫ ∫ r( , ) ,   

obtain the equation for energy loss: 

 
2

2

0

16

15
e f

Q
nB SE

x cr

⎛ ⎞Δ π Δα
= ⎜ ⎟

Δ ⎝ ⎠�
.  

Absorption of femtosecond pulse by atmospheric 
gases was studied in Ref. 11 with a PA technique. 
Using the experimental data11: .

−

τ = ⋅
131 14 10 s,  

.

−

= ⋅

1

0 2 5 10 cm,r  T = 298 K, . ,

−

= ⋅

19 3
2 4 10 cmn  and  

=

410 ergfE  along with .

−

Δα = ⋅
24 3

0 71 10 cm  [Ref. 12] 
and .= ⋅

11
3 8 10 Hz,

e
B  we obtain the effective 

absorption coefficient for molecular nitrogen:  

  . ,

− −

⎛ ⎞π α
= = ⋅⎜ ⎟

⎝ ⎠

�

�

2

6 1

0

16
1 65 10 cm

15
e fk nB SE

cr
   

which coincides with the experimentally measured 
one in the order of magnitude. 

Conclusion 

Nonresonant interaction of nonpolar molecules 
with a femtosecond laser pulse, much shorter than 
characteristic electron travel times, has been 
considered in this work. Neglecting multi-photon 
absorption, the molecule density matrix has been 
obtained in the fourth order of the perturbation and 
the general expression for the field energy loss has 
been found.  

As is known, the density matrix best describes 
the state of the quantum system; hence, the obtained 
equations can be used as input data for solution of 
many problems, concerned with the interaction of 
considered type, such as problems of pulse 
propagation in a medium, relaxation of molecular 
system after pulse propagation, determination of 
nonlinear susceptibility of a medium, orientation and 
alignment of molecules in a field, etc. 
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