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The permanent stochastic perturbation influence on charged particles in a stationary magnetic 

field is under theoretical study. For this purpose, the non-linear Schrödinger equation is solved. It is 
found that a large number of cyclotron radiation harmonics is excited in weak magnetic fields. The 
number of harmonics decreases with increase of the field intensity, and radiation can disappear 
completely at a certain intensity magnitude. Probabilities of populating of for quantum levels 
induced by oscillators’ field are plotted as functions of temperature. 

 
We consider influence of stochastic perturbation 

on the character of spin-free charged particle motion 
in a stationary magnetic field. 

To analyze the behavior of particles in a magnetic 
field under permanent stochastic perturbations, the 
non-linear Schrödinger equation is used, constructed 
by the method of path integrals for systems that 
undergo permanent stochastic perturbation.1,2 If the 
scalar potential and transit rate of the subsystem in 
the thermostat in this equation are zero, we obtain 
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where ˆP  is the pulse operator; À is the vector 
potential of the external field; q is the particle 
discharge; m is its mass; c is velocity of light; α is a 
small positive parameter, whose magnitude depends 
on the density of the medium surrounding the 
subsystem; χ = kT*/2 (k is the Boltzmann constant; 
T* is the efficient ambient temperature). 

We solve this equation in two steps. At the first 
step, we find a solution of the stationary reduced 
equation, in which the non-linear summand is absent. 
At the second stage, we study the effect of non-
linearity of the obtained equation on stability of these 

states. Introduce the Cartesian coordinate system and 
suppose that the magnetic field is oriented along the 
Z-axis. In this case, the vector potential has the 
following components: 
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Here Í is the magnetic field intensity. 
The reduced linear equation following from Eq. 1 

has the form 
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If we represent the possible solution of the 
equation (3) in the form 
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(Å is the distribution constant), the stationary 

equation 
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where 

 ( )= + α − χ� 1E i E  

is valid for the coordinate function ψ(r). 
The solution of equation (4) is well-known.3,4 

Representation of the wave function as a product 
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permits one, with allowance for Eq. (2), to write the 
equation 
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where 
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The equation (5) formally coincides with that 
for the harmonic oscillator, fluctuating about the 
point ó0 with the cyclic frequency 

 ω = ( ) .qH mc  

Therefore, wave functions of a particle, which exists 
in a stationary magnetic field and undergoes 
permanent stochastic perturbation can be expressed 
by the Hermite polynomial: 
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where 
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For the separation constant ,E�  holds 
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where n = 0, 1, 2, … , then the initial separation 

constant in the reduced Schrödinger equation is 
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Although the obtained expressions are close to 
the corresponding relations for the states of a 

permanently perturbed oscillator,2 some features are 
revealed when analyzing the stability of quantum 
states of a particle in a magnetic field. Let us 
examine them in more detail. 

Represent the solution of equation (1) in the form 
 

 
∞

=

ψ = ψ∑
0

( , ) ( ) ( ).
n n

n

t C tr r  

The coefficients Cn(t) satisfy the system of non-linear 
equations 
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By analogy with Ref. 2, analysis demonstrates 
that unfilled states are stable at the non-zero α. 

Based on Eq. 6, the transition to occupation 
numbers Pn(t) = ⎪Cn(t)⎪ 

2 allows us to write  
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The system of equations (7) shows that a particle 
existing in a magnetic field in the equilibrium state 
has only one non-zero occupation number. It means 

that despite the fact that �

n
E  can formally have a 

continuous set of values, the energy of a charged 
particle in a magnetic field corresponds to a fixed 
quantum number n. 

Let us consider the dynamics of population for 
different quantum states ψn(r, t). Here we take into 
account the fact that non-occupied states can vary 
only if  

 α ≤ α = δ + χ�� ( ),
n n

E  

where δ is a small positive number.1,2 

Using the two-level approximation, we write the 
system (7) in the form 
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For definiteness, we assume that initially Ðn0 = 1; 
Ðl0 = 0. 

The Jacobian of the system of equations (8) is 
different from zero: 
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This demonstrates that there are no other equilibriums 
near the fixed points.5 

The parameter 

 ( ) ( ), , .
n lP n P nl lF P P P P′ ′σ = + Φ  

Its sign determines the stability of trajectories, by 
which an induced oscillator can be in the non- 
equilibrium state.5 

The value of the parameter, to an accuracy of 
smaller orders of magnitude, is as follows: 
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For higher intensities of the magnetic field 
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For the state with n = 0, the parameter σ 
becomes negative. In this case, the trajectory is 
stable and the oscillator returns to its initial state. In 
other words, the Bose condensation of states must 
take place for induced oscillators, i.e., when charged 
particles move in a magnetic field, they do not 
radiate electromagnetic waves. This possible collapse 
of cyclotron radiation is caused by the fact that the 
total mechanic energy is not sufficient to excite 
oscillators induced by a magnetic field. 

Relative intensity of cyclotron radiation 

harmonics is estimated in this work by the algorithm 
described in Ref. 2. We take into account the fact 
that upward transitions from the lower level with the 
number n are possible for levels, whose numbers 
satisfy the inequality 
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Figures 1–3 present probabilities of occupation 
densities of oscillation levels for different ratios 

y = ω�/(kT) = 0.5 at different values of the parameter 

z = p
z

2
/(mkT). For comparison, solid lines present 

Boltzmann distributions. 

(8)
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Fig. 1. 
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Fig. 2. 
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Fig. 3. 

 

As is seen from Figs. 1–3, the above-mentioned 
dependences are close to each other. 

Figures 4–6 present computed intensity 

distributions for radiation of oscillators induced by a 

magnetic field for the same values of parameters y 
and z as in Figs. 1–3. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 
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Radiation intensities differ from each other  
to some extent. This is connected with difference  
in the probability of transition from one energy  

level to another. For other parameters y and z, the 

corresponding distributions have the same structure. 
  The dependences, obtained theoretically, 
demonstrate that the radiation spectrum contains a 
large number of intensive harmonics of cyclotron 
frequency if the intensities of magnetic fields are 
small. The relative intensity of harmonics decreases 
with increase of the magnetic field intensity. At  
the qualitative level, these results agree with the 

experiment. A large number of cyclotron harmonics 
can be observed in the aurora borealis (radiation  
of charged particles in the magnetic field of the 
Earth, including cyclotron radiation). In strong 

fields, one can see a small number of cyclotron 
frequency harmonics.6 
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