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The applicability of neural network techniques to the problem of retrieval of the aerosol 

particle single-scattering albedo from calculations of the clear sky brightness in a spectral range 
0.675 μm is under analysis. A homogeneous neural network consisting of three latent layers, each of 
10 neurons, has been considered. A complex of optical parameters covering their actual variations 
under different atmospheric conditions was used in learning the network. The network was tested in 
accordance with many samples under learning. A histogram of deviations of the found albedo values 
from model ones is presented. It follows from the histogram that deviations within 3% are observed 
in 96.8% of cases. 

 

The progress in computation technologies 
stimulates a search for new approaches to solution of 
the problems of atmospheric optics. In the present 
paper, a possibility to apply the artificial neural 
network to determining the single scattering albedo 
of aerosol particles ωà from the data of almucantar 
cloudless sky brightness measurements is considered. 
  The classic way of solving such a problem, based 
on the use of results of the numerical solution of the 
radiative transfer equation, includes two approaches. 
The first, very intricate, is based on the application 
of the iterative algorithms, and consists of an 
approximate estimation of the aerosol microstructure 
from observations of the spectral optical thickness, 
albedo of the underlying surface, and clear-sky 

brightness. Each of progressive approximations is formed 

on the base of the results of solving the radiative 
transfer equation with data of previous iteration used 
as input parameters. On comparing the calculated 

values with experimental data, the decision is taken 
to continue or to stop the iterative process.1–3 

The second approach consists of the approximate 
formulae, derived from the solution of the radiative 
transfer equation,4–6 which together with the total 
optical thickness, determined by Bouger’s method and 

including components of scattering and absorption, 
allows one to compute ωà. In the latter case, the 
researcher meets a need to take into account the 
asymmetry of the aerosol phase function.7 This can be 
realized through the iterative procedure. At such an 
approach, one must handle with intricate expressions, 
especially at second and subsequent approximations. 
  In this work, a possibility is analyzed of 
development of one more approach to determine ωà in 
the framework of a mathematical apparatus, specially 
designated to solve similar problems: neural networks. 
The method of the neural network utilizes different 

ways to solution of physical problems: the method of 
inversion of the neural network, the method of 
hybrid fuzzy system, and the method of the stratified 
network with the algorithm of back propagation.8,9  
It should be noted that information on the use of the 
neural network for determination of the optical 
parameters of scattering media is available in 
scientific literature.10–12 

The single scattering albedo of aerosol particles 
can be calculated by the following ways: 

1) the set of the geometric and optical parameters 
of the atmosphere and corresponding data on diffuse 
irradiance, entered into neural network, is determined. 
The latter are computed by solving the radiative 
transfer equation;  

2) the learning sample is separated from the 
initial data, followed by subsequent teaching of the 
neural networks on its base; as well as the test 
sample is determined, with the help of which the 
testing of the trained neural networks is realized; 
  3) the type and structure of the neural network 
are found, and the approximate number of neurons 
used is calculated; 

4) the training and following testing of the 
neural network are carried out, accompanied by 
possible modification of its structure provided the 
results of the training or testing do not satisfy the 
preassigned criteria. 

The Monte Carlo method was used to solve the 
radiative transfer equation in scalar form.13,14 In the 
considered case, the values of the sky brightness in 
the solar almucantar in clear sky atmosphere in the 
red spectral range (λ = 0.675 μm), computed for the 
aerosol atmosphere were used as the initial data. The 
model included three groups of particle with lognormal 
size distributions: Aitken nuclei, submicrometer and 
coarse fractions. 
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Elongation of the aerosol scattering phase function 
fa(ϕ) was varied by changing the number of particles 
in modes,15 and the corresponding coefficients of 
asymmetry of the radiative fluxes for aerosol particles 
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were set to be equal to 6.00, 7.03, 9.66, and 11.55. 
Optical thickness due to the Rayleigh scattering τms 

was equal to 0.0427. Aerosol optical thickness varied 
in interval 0.1 ≤ τa ≤ 0.7 with a step of Δτa = 0.05, 
which covered the absolute majority of the optical 
situations in the cloudless atmosphere. The values of 
the single scattering albedo ωà were changed within 
the limits 0.7 ≤ ωà ≤ 1.0 with a step of Δωà = 0.1. The 
zenith angles of the Sun were equal to 60; 70.5; 75.5; 
and 78.5°, while the scattering angle varied between 
0 and 157°. The underlying surface albedo was 
assumed equal to 0.15, which was equivalent to the 
summer conditions for majority of the types of the 
land cover. The absorption of air molecules was 
considered negligibly small. 

As a test sample, the values of sky brightness 
and single scattering albedo were used, calculated for 
the following optical parameters of the atmosphere: 
aerosol scattering optical thickness τa equal to 0.15; 
0.23; 0.37; 0.41; 0.54; 0.66; and 0.69; secants of the 
solar zenith angle Z: 2; 2.2; 2.9; 3.2; 3.3; 3.5; 4.1; 
4.2; 4.5; and 4.9; single scattering albedo of the 
aerosol particles ωà: 0.73; 0.84; and 0.96. 

The stratified neuron networks were used to 
solve the problem of ωà retrieval. The widely known 
Back propagation algorithm was used in their 
training. This is an iterative gradient algorithm of 
training, which is used to minimize the root mean 
square deviation of the actual current output from 
the desired output of the multi-layer neural 
networks.8,9 

Several structures of neural network – from 
single-layer to ten-layer – with different number of 
neurons in the layer were analyzed. The most 
reasonable results were shown by the homogeneous 
neuron network with three latent layers and 10 
neurons in each. In the network chosen, maximum 
and mean absolute errors in ωà estimation made 0.013 
and 0.043, when testing at the learning set, and 
0.012 and 0.043, respectively, when testing at the 
examples, not belonging to the learning set. That was 
essentially better than for other networks considered. 
In the construction of the neural networks, the 
program product NeuroPro, version 0.25 was used. 
Their training was carried out with 1008 teaching 
examples. The network was tested at 280 examples 
with variation of the basic optical characteristics in 
the limit of values, specified for the learning sample. 
  The results of neural network testing are 
presented in the form of histogram shown in Figure, 
where the deviations δ of the single scattering albedo 
of particles ωà,test from ωà,0 are presented: 
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Here ωà,test are the values of the single scattering 
albedo at the output of the neural network, and ωà,0 
are the values of albedo, used in solving the radiative 
transfer equation. 
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Fig. Histogram of results of testing of the neural network. 
N is the number of examples, δ is the relative deviation, 1 is 
the curve of the stochastic distribution of deviations. 

 

For considered 280 examples of ωà retrieval, in 
160 cases (57%) relative deviations are within ± 1% 
and in 257 cases (91.8%) they do not exceed ± 3%. 
On the whole, the errors in retrieval of all 280 ωà 
values do not exceed ± 5.5%. The deviations are not 
of systematical character for different input 
parameters of the testing sample. Although, it should 
be noted that negative deviations are observed mainly 
for small values of the aerosol optical thickness and 
positive – for thickness exceeding 0.5. The least 

number of deviations, exceeding 3%, arise at the 
asymmetry coefficient of radiative fluxes equal to 
9.66. These facts require a more detailed analysis. 
  Thus, the first attempt of using the neural 
network technologies for the retrieval of the single 
scattering albedo of the aerosol particles from the 
data on the model sky brightness gave the positive 
result: it has shown the principal possibility of their 
practical application for solution of highly complicated 
multi-parameter problems of the atmospheric optics. 
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