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The sensitivity of a holographic interferometer to transversal or longitudinal displacements of a 

flat surface, diffusively scattering light, is analyzed. It is shown that the interference patterns are 

located in the hologram plane and far diffraction zone. To record them, spatial filtration of the 
diffraction field is required. The experimental results agree well with theoretical prerequisites. 

 
It was shown in Ref. 1, that under control of 

transversal displacement of a flat surface, diffusively 
scattering light (hereinafter scatterer), at a double-
exposure recording of the hologram of the scatterer 
image, focused with a Kepler tube, a homogeneous 
displacement of subjective speckles, corresponding to 
the second exposure, and variations of their slope 

angles offer scope for localization of interference 
patterns in two planes, i.e., the hologram plane and 
Fourier plane. Spatial filtration of the diffraction field 

in the corresponding planes allows one to determine 
the interferometer sensitivity. In the case of 
interference pattern localization in the hologram plane, 
where the scatterer is imaged, the sensitivity depends 

on magnification of the double-exposure optical system 
and the curvature of a spherical wave of the coherent 
radiation, used to illuminate the scatterer while 
recording the hologram. For the interference pattern 

located in the Fourier plane, the interferometer 

sensitivity depends on the focal length of the 

telescopic lens, when the coefficient of scatterer image 
scaling is less than unit. Besides, recording of 
interference patterns in the planes of their localization 

is accompanied by the fringe parallax effect. 
The localization of the interference pattern in 

the above planes is also realized in case of a transversal 
displacement of the scatterer due to extension of 
subjective speckles, corresponding to the second 

exposure, in the hologram plane, and their slope 
angle, radially varying from the optical axis. In this 
case, the interferometer sensitivity for both 

localizations depends on the same above-described 
parameters. In this case, the fringe parallax effect does 
not accompany the recording of interference patterns 
in the planes of their localization while spatial 
filtering the diffraction field. 

In this work, peculiarities of formation of 
interference patterns are analyzed, which characterize 
transversal or longitudinal displacements of the 
scatterer during double-exposure recording of quasi-
Fourier and Fourier holograms with the help of a 
collimating microscope in order to determine the 
interferometer sensitivity. 

Consider Fig. 1. Opaque screen 1 in the plane 
(õ1, ó1) is illuminated by coherent radiation with 
diverging spherical wave of the curvature radius R. 
Radiation, diffusively scattered by the screen and 
passing the microscope optics (positive thin lens L1 is 
the objective and positive thin lens L2 is the ocular), 
is recorded during the first exposure on the 
photoplate 2 in the plane (õ4, ó4) by means of the off-
axis reference plane wave making the angle θ with 
the normal to the photoplate plane. Before the 
second exposure, the opaque screen is displaced in its 
plane, e.g., to the value a toward the x-axis. 
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Fig. 1. Schematic view of two-exposure hologram recording: 1 

is the opaque screen; 2 is the photoplate; L1 and L2 are the 
positive lens; ð1 and ð2 are the objective apertures. 

 

The distribution of the complex amplitude of the 
field, corresponding to the first exposure, to the Fresnel 
approximation with accounting for the diffraction 
limitedness, in the object channel in the photoplate 
plane takes the form  
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where k is the wave number; t(õ1, ó1) is the complex 
amplitude of screen transmission, being the random 
function of coordinates; ð1(õ2, ó2) is the pupil 
function2 of the lens L1 with the focal length f1; 
ð2(õ3, ó3) is the pupil function of the lens L2 with the 
focal length f2; Δ is the microscope tube length; l1 is 
the distance from the principal plane (õ2, ó2) of the 
lens L1 to the screen; l2 is the distance from the 
principal plane (õ3, ó3) of the lens L2 to the 
photoplate. 

Taking into account that the opaque screen is 
imaged in the frond focal plane of the lens L2, i.e., 
(1/f1) = 1/l1 + 1/(f1 + Δ) and the condition (1/f2) = 
= 1/l2 + 1/(f2 + Δ) [Ref. 3], equation (1) takes the form 
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where ⊗ denotes the convolution; f = f1f2/Δ is the 
focal length of the microscope; Ð1(õ4, ó4) is the 
Fourier transform of the function ð1(õ2, ó2) (with 
accounting for its parity) with the spatial frequencies 
x4/λf and y4/λf (λ is the wavelength of the coherent 
light source, used at the stages of hologram recording 
and reconstruction); Ð2(õ4, ó4) is the Fourier transform 
of ð2(õ3, ó3) with the spatial frequencies 
 

 ( )Δ λ + Δ4 2 2/x f f  and ( )4 2 2/ ;y f fΔ λ + Δ  
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Like in Ref. 3, let the width of the function 
Ð1(õ4, ó4) be about λf/d1 [Ref. 4], where d1 is the 
pupil function of the lens L1 and the phase change of 
a spherical wave with the curvature f 2

Δ/f1(f1 + Δ) 

does not exceed π within the domain of function 
existence. Then take the squared phase factor 

2 2 2

1 1 4 4exp – ( )( )/2ikf f x y f⎡ ⎤+ Δ + Δ⎣ ⎦  out of the integral 

of convolution with the function Ð1(õ4, ó4) in Eq. (2) 
for an area of D1 ≤ d1fΔ/f1(f1 + Δ) in diameter in the 
photoplate plane and obtain  
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The width of Ð2(õ4, ó4) is about λf2(f2 + Δ)/d2Δ 
(d2 is the pupil function of the lens L2); therefore, 
assume that the phase change of a spherical wave 
with the curvature f2(f2 + Δ)/Δ does not exceed π 
within the domain of the function existence. Again, 

take the squared phase factor 2 2

4 4exp – ( )/ik x y⎡ Δ +⎣  

2 2/2 ( )f f ⎤+ Δ ⎦  out of the integral of convolution with 

the function Ð2(õ4, ó4) in Eq. (3) for a photoplate 
area of D2 ≤ d2 in diameter and obtain  
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It follows from Eq. (4), that the quasi-Fourier 
transform of t(–õ1, –ó1) is formed in case of 
d1f2/(f1 + Δ) ≤ d2 in the photoplate plane within the 
diameter D1, corresponding to the diameter of the 
microscope exit pupil at R ≠ ∞. In this case, each 
point of the above area is extended up to the size of 
the subjective speckle, defined by the width of the 
function Ð1(õ4, ó4) ⊗ Ð2(õ4, ó4). 

The distribution of the complex amplitude of the 
field, corresponding to the second exposure, in the 
object channel in the photoplate plane is defined by 
the equation (based on the Fourier transform 
properties) 
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With accounting for the known identity5 and the 
convolution of functions  
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where δ(õ4, ó4) is the Dirac delta function, equation (5) 
takes the form  
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The proof of the identity 
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follows from the integral representation of 
convolution operation in Eq. (6). Hence, the 
distribution of the complex amplitude of the field, 
corresponding to the second exposure, in the object 
channel in the photoplate plane within the above 
area is defined by the equation 
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According to Eq. (7), a transversal displacement 
of the scatterer is accompanied by a variation of slope 
angle of the subjective speckle-field, corresponding to 
the second exposure, to the value a/f relative to the 
speckle-filed of the first exposure. In addition, the 
subjective speckle component, caused by the 

diffraction of a plane wave on the microscope 
objective pupil, homogeneously displaces to af/R. In 
this case, the displacement value depends on the 
microscope focal length and the curvature of a 

spherical wave of the coherent radiation, used for the 
scatterer illumination while recording the hologram, 
and the displacement direction depends on the 
curvature sign.  

If the double-exposure quasi-Fourier hologram is 
recorded at the linear part of the photo-material 
blackening curve, then the distribution of the complex 
amplitude of its transmittance, corresponding to the 
(–1)-st diffraction order, takes the form 
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Let the diffraction field be spatially filtered at 
the stage of hologram reconstruction in the hologram 
plane on the optical axis with a round aperture in the 
screen p0 (Fig. 2). In this case, within its diameter, 
the phase change kax4/f does not exceed π. Then the 
distribution of the field complex amplitude at the 
spatial filter outlet is defined as  
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where p0(õ4, ó4) is the transmission function of the 
spatial filter.6 
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Fig. 2. Schematic view of recording of the interference 
pattern located in the plane of scatterer imaging: hologram 2; 

recording plane 3; positive lens L 0
′; spatial filter ð0. 
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Let the focal length of the lens L 0
′ (Fig. 2) be 

equal to f 0
′ . Then, on the base of Ref. 7, the 

distribution of the field complex amplitude in its 
back focal plane (õ5, ó5) takes the form 
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where Ð0(õ5, ó5) is the Fourier transform of ð0(õ4, ó4) 

with the spatial frequencies õ5/λf 0
′  and y5/λf 0

′ . 
If the variation period of 1 + exp(ika2/2R) × 

× exp(ikfax5/Rf 0
′) is at least one order of magnitude8 

larger than the width of Ð0(õ5, ó5), determining the 
size of subjective speckle in hologram recording 
plane 3 (see Fig. 2), within limits of overlap of the 
functions 
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then we take it out of the convolution integral in 
Eq. (10). Again, with accounting for smallness of a 
and f2(f2 + Δ)a/fΔ, the light distribution in the plane 
(õ5, ó5) is defined by the equation  
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It follows from Eq. (11) that in case of 
diffraction limitedness of the field, when the 
diameter D0 of the illuminated area of the opaque 
screen (see Fig. 1) satisfies the condition D0 ≥ d1, the 
subjective speckle structure is modulated by fringes, 
alternate on the x-axis, in the scatterer-imaging plane 

(Fourier plane). The fringe period Δõ5 = λRf 0
′/af is 

independent of the sign of curvature of the spherical 
wave front of the coherent radiation, used for 
scatterer illumination at double-exposure recording of 
the quasi-Fourier hologram. In addition, the fringe 
frequency increases with a decrease in R at fixed 

λ, a, f, and f 0
′ . 

This enhancement of interferometer sensitivity to 
a transversal displacement of the scatterer is 
explained by an increase in displacement of the 
component of the subjective speckle, corresponding 
to the second exposure, which is caused by the plane 
wave diffraction on the microscope objective pupil in 
the hologram plane. When R = ∞ and the distribution 
of the complex amplitude of the field, corresponding 
to the Fourier transform of the function t(–õ1, –ó1), 
is formed in the plane of the photoplate 2 (see 
Fig. 1), an interference pattern does not formed in 
the Fourier plane at the stage of Fourier hologram 
reconstruction, where a “frozen” interference pattern 
is formed, and there is no need in spatial filtration of 
the diffraction field while recording.  

Let the spatial filtration of the diffraction field 
be performed on the optical axis in the scatterer-
imaging plane (õ5, ó5) (Fig. 3) at the stage of 
reconstruction of the double-exposure quasi-Fourier 
hologram. Then, based on the integral convolution 
representation, the distribution of the field complex 
amplitude of the (–1)-st diffraction order at the 
hologram output is written in the form 
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θ

 
Fig. 3. Schematic view of recording of the interference 

pattern localizing in the hologram plane: hologram 2; recording 

plane 3; positive lenses L 0
′ and L 0

′′; spatial filter ð0. 

 
Hence, neglecting the spatial limitedness of the 

field, define the distribution of its complex amplitude 
in the plane (õ5, ó5) (see Fig. 3) by the equation 
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where F1(õ5, ó5) is the Fourier transform of the 
function t(–Rξ/f, –Rη/f) with the spatial frequencies 

õ5/λf 0
′  and y5/λf 0

′ . 

If the phase change (kfax5/f 0
′R) ≤ π within the 

diameter of the filtering aperture of the spatial filter 
p0 (see Fig. 3), than the distribution of the field 
complex amplitude at its outlet takes the form 
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where ð0(õ5, ó5) is the transmission function of the 
spatial filter. 

Assume, for brevity, that hereinafter the focal 

length f 0
′′ of L 0

′′ is equal to f 0
′  (see Fig. 3). Then the 

distribution of the field complex amplitude in its 
focal plane (õ6,ó6) is defined by the equation 
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where Ð0(õ6, ó6) is the Fourier transform of ð0(õ5, ó5) 

with the spatial frequencies õ6/λf 0
′  and y6/λf 0

′ . 
If the variation period of 1 + exp(ika2/2R) × 

× exp(–ikax6/f) in Eq. (15) is at least one order of 
magnitude larger than the width of Ð0(õ6, ó6), 
determining the size of subjective speckle in recording 
plane 3 (see Fig. 3), then take it out of the integral 
of convergence with the function Ð0(õ6, ó6). Then, 
using the integral representation of the convergence, 

write the light distribution in the plane (õ6, ó6) in 
the form 
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It follows from Eq. (16) that an interference 
pattern in the form of fringes, alternating on the x-
axis, is formed in the hologram-imaging plane, 
modulating the subjective speckle structure, when 
building a hologram image with the use of Kepler 
telescopic system with special filtration of the 
diffraction field in its partial plane. In this case, the 
fringe period Δõ6 = λf/a is independent of the 
curvature of a spherical wave of the coherent 
radiation, used for scatterer illumination at the stage 
of hologram recording, while the interferometer 
sensitivity to transversal displacement of the scatterer 
depends on the coefficient, determining the scale of 
the Fourier transform of the function t(–õ1, –ó1). 
Besides, if the diameter of collimated beam at the 
stage of hologram reconstruction exceeds the above 

D1 value, which is larger than the lens L 0
′  diameter, 

then spatial extension of the interference pattern, 
localizing in the hologram plane, is limited to the 
domain of existence of the Fourier transform of the 
function t(–õ1, –ó1). 

To analyze the behavior dynamics of the fringes, 
equidistance on the x-axis, in the planes of their 
localization (Fourier and hologram planes), assume 
that the spatial filtration of the diffraction field in 
the hologram plane is fulfilled beyond the optical 
axis, i.e., the filtering aperture in Fig. 2 is centered 
at (x04, 0). Its diameter is much larger than the domain 
of existence of the function Ð1(õ4, ó4) ⊗ Ð2(õ4, ó4) 
and the phase change (kax4/f) ≤ π within the 
diameter; hence, the distribution of the field complex 
amplitude at the spatial filter outlet takes the form 
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As a result of the Fourier transformation, this 
distribution in the Fourier plane (õ5, ó5) is defined as  
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It follows from this and the accounting for x04 >> a 
that the light distribution in the recording plane 3 
(see Fig. 2) takes the form 
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The comparison of Eqs. (11) and (19) shows that 
when the filtering aperture center is displaced on the 
x-axis in the hologram plane, the interference pattern 
(along with pupil images of the lens L1 and L2 
(Fig. 1)) is displaced relative to a static image of the 
scatterer due to the fringe parallax, caused by 
homogeneous displacement of the above component of 
the subjective speckle, corresponding to the second 
exposure, and properties of subjective speckles. In 
this case, the magnitude of displaced fringes depends 
not only on the curvature of a spherical wave of the 
coherent radiation, used for scatterer illumination 
while recording the hologram, but also on its sign. In 
a particular case of convergent spherical wave with 
R = f, the light distribution in the plane (õ5, ó5) (see 
Fig. 2) is defined by the equation 
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Besides, while varying x04, the interference pattern 
phase changes by π when displacing the filtering 
aperture center, e.g., from the interference pattern 
minimum, located in the hologram plane, to its 
maximum (“living” fringes). 

If the spatial filtration of the diffraction filed is 
carried out in the Fourier plane (õ5, ó5) (Fig. 3) at 
the point (x05, 0), then the distribution of the field 
complex amplitude at the filtering aperture outlet, 
within diameter of which the phase change 

kfax5/Rf 0
′  ≤ π, takes the form 
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In this case, the field complex amplitude 
distribution, resulting from the Fourier transform, in 
the plane (õ6, ó6) (see Fig. 3) is defined as 
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Based on Eq. (22) and with accounting for the known 

identity5
 and integral convolution representation, the 

light distribution in the hologram-imaging plane 
(õ6, ó6) takes the form  
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It follows from the comparison of Eqs. (16) and 
(23), that when the filtering aperture center is 
displaced on the x-axis in the Fourier plane, the 
interference pattern displaces due to the fringe 
parallax, caused by a homogeneous displacement of 
the above component of the subjective speckle, 
corresponding to the second exposure. Besides, while 
varying õ05, the interference pattern phase changes by 
π when displacing the filtering aperture center, e.g., 
from the interference pattern minimum, located in 
the Fourier plane, to its maximum. 

It follows from the above analysis of forming the 
interference patterns, characterizing the transversal 
scatterer displacement, that they localize in the 
hologram and Fourier planes as in case of holographic 
interferometer.1 However, in the considered holograph 
interpherometer, the holograph pattern is localized in 
the scatterer-imaging plane, is formed in the Fourier 
plane, where identical speckles of two exposures are 
matched at spatial filtering of the diffraction field in 
the hologram plane. In this case, the interferometer 
sensitivity to the transversal displacement of the 

scatterer depends on the microscope focal length and 
the curvature of the spherical wave front of the 
coherent radiation, used for scatterer illumination 

when recording the hologram. Besides, as in Ref. 1, the 

fringe parallax effect is characteristic for the interference 
pattern, located in the scatterer-imaging plane. 

The slope angle of the subjective speckle-field, 
corresponding to the second exposure, in the 
hologram plane results in formation of an interference 
pattern at the spatial filtering of the diffraction field 
in the Fourier plane. In this case, the interferometer 
sensitivity to transversal displacement depends on the 
microscope focal length; the fringe parallax takes 
place due to the displacement of subjective speckles, 
corresponding to the second exposure, in the 
hologram plane. 

Let opaque screen 1 be z-axial displaced to 
Δl << l1, R before the second exposure of photoplate 2 
(see Fig. 1). Then in the used approximation, the 
distribution of the field complex amplitude, 
corresponding to the second exposure, in the object 
channel in the photoplate plane is written as  
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  (24) 

Equation (24) after transformation takes the form 
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 (25) 

According to Eq. (25), the squared exponential 

phase factor 2 2 2

4 4exp – ( )/2ik l x y f⎡ ⎤Δ +⎣ ⎦  characterizes 

the total slope angle and a slope angle, radially 
varied from the optical axis of the subjective speckle 
field, corresponding to the second exposure, relative 
to the speckle field of the first exposure;  
an additional radial variation of the slope angle  
from the optical axis takes place in the photoplate 
plane of the subjective speckles relative to the  
similar speckles of the first exposure due to the phase 
factor ⎡ ⎤Δ +⎣ ⎦

2 2 2

4 4exp – ( – )( )/2ik R l x y f  under the 

convolution integral. In contrast to the previous 
slope angle, this one depends on the curvature of the 
spherical wave of the coherent radiation, used for 
scatterer illumination when recording the hologram. 
  In the considered case of controlling the scatterer 
transversal displacement in the double-exposure 

recording of the quasi-Fourier hologram on the linear 
part of the photomaterial blackening curve, the 
distribution of the complex amplitude of the hologram 
transmission, corresponding to the (–1)-st diffraction 
order, on the base of Eqs. (4) and (25) takes the form 
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  (26) 

If spatial filtration of the diffraction field is 
carried out at the stage of hologram reconstruction 
(see Fig. 2) in its plane on the optical axis, then 

assume that the phase change 2 2 2

4 4– ( )/2k l x y f⎡ ⎤Δ +⎣ ⎦  

does not exceed π within the filtering aperture 
diameter. Then the distribution of the field complex 
amplitude at the outlet of the spatial filter ð0 is 
defined by the equation 
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  (27) 

After the Fourier transformation, the distribution 
of the field complex amplitude in the plane (õ5, ó5) 
(see Fig. 2) takes the form  
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  (28) 

If the variation period of the function 

1 + exp(ikΔl) 2 2 2 2 2

5 5 0exp ( )/2ikf l x y R f⎡ ⎤′Δ +⎣ ⎦  is at least 

one order of magnitude larger than the width of the 
function Ð0(õ5, ó5), then take it out of the convolution 

integral in Eq. (28). Then the light distribution in 
recording plane 3 (see Fig. 2) is defined as 
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It follows from Eq. (29) that a subjective 
speckle structure in the Fourier plane of the scatterer 

imaging, restricted by the microscope viewing angle, 
is modulated by fringes of equal slope – the system 
of concentric interference rings. Measurement of their 
radiuses in neighboring fringe orders allows definition 
of transversal displacement of the scatterer for the 

known variables λ, R, f, and f 0
′ . In this case, the 

interferometer sensitivity to the transversal 
displacement is independent of sign of the curvature 
radius R and increases with the decrease in its value 
due to an increase of the slope angle, radially varying 
from the optical axis, of subjective speckles, 
corresponding to the second exposure, with respect to 
the similar speckles of the first exposure.  

If spatial filtration of the diffraction filed is 
carried out in the scatterer-imaging plane (õ5, ó5) (see 
Fig. 3) at the stage of the double-exposure quasi-
Fourier hologram reconstruction, then, neglecting the 
spatial limitedness of the field, the distribution of its 
complex amplitude in the above plane takes the form 
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If the center of filtering aperture is on the optical 

axis, and the phase change 
2 2 2 2 2

4 4 0( )/2 ,kf l x y R f⎡ ⎤′Δ + ≤ π⎣ ⎦  

within it, then, accounting for the fact that 

2 2 2 2

4 4 0 5 5exp ( )/2 ( , )ikf x y f l x y⎡ ⎤′+ Δ ≈ δ⎣ ⎦  in the order of 

magnitude, the distribution of field complex amplitude 
at the spatial filter outlet is defined as 
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After the Fourier transformation, the distribution 
of the field complex amplitude in the plane (õ6, ó6) 
(see Fig. 3) takes the form 
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Based on Eq. (32), when the variation period of the 

function 2 2 2

6 61 exp( )exp – ( )/2ik l ik l x y f⎡ ⎤+ Δ Δ +⎣ ⎦  is at 

least one order of magnitude larger then the width of 
Ð0(õ6, ó6), the light distribution in recording plane 3 
is defined by the equation  

 ( ) ( )2 2
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According to Eq. (33), a subjective speckle 
structure in the hologram plane is modulated by 
fringes of equal slope – the system of concentric 
interference rings. In this case, the interferometer 
sensitivity to the longitudinal displacement of the 
scatterer depends on the microscope focal length and 
is independent of the curvature of the spherical wave 
front of the coherent radiation, used for scatterer 
illumination when recording the hologram. Besides, as 

in the case of controlling the transversal displacement 
of the scatterer, taking into account the above 
conditions of the hologram reconstruction, the spatial 
extension of the interference pattern is limited to the 
domain of existence of the Fourier transform of the 
function t(–õ1, –ó1). When R = ∞ and the Fourier 
transform of the function t(–õ1, –ó1) is formed in the 
hologram plane, a “frozen” interference pattern is 

formed there, recording of which does not require 
spatial filtration of the diffraction field. 

To analyze the behavior dynamics of the fringes, 
characterizing longitudinal displacement of the 

scatterer, assume that the spatial filtration of the 
diffraction field in the hologram plane is fulfilled 
beyond the optical axis, i.e., the filtering aperture in 
Fig. 2 is centered at (x04, 0). Hence, the distribution 
of the field complex amplitude at the spatial filter 
outlet takes the form 
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After the Fourier transformation, the distribution 
of the field complex amplitude in the scatterer-
imaging plane (õ5, ó5) (see Fig. 2) is defined by the 
equation 
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on the base of which the light distribution in recording 
plane 3 (see Fig. 2) takes the form 
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It follows from the comparison of Eqs. (29) and (36), 
that in case of filtering aperture center displacement in 
the hologram plane, the interference pattern center is 
fixed relative to the immovable scatterer image, i.e., 
the fringe parallax is absent. In this case, while 
varying x04, the interference pattern phase changes by 

π when displacing the filtering aperture center, e.g., 
from the interference pattern maximum, located in 
the hologram plane, to its minimum.  

If, according to Fig. 3, the spatial filtration of 
the diffraction field at the stage of double-exposure 
quasi-Fourier hologram reconstruction is fulfilled 
beyond the optical axis, e.g., the filtering aperture is 
centered at the point (x05, 0), then the distribution of 
the field complex amplitude at the spatial filter 
outlet is defined by the equation 
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After the Fourier transformation, the distribution 
of the field complex amplitude in the plane (õ6, ó6) 
(see Fig. 3) takes the form 
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on the base of which the light distribution in 
recording plane 3 (see Fig. 3) is defined as 
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It follows from the comparison of Eqs. (33) and 
(39), that in case of filtering aperture center 
displacement in the Fourier plane, the interference 
pattern center is fixed, i.e., the fringe parallax is 
absent. In this case, while varying x05, the interference 
pattern phase changes by π when displacing the 
filtering aperture center, e.g., from the interference 
pattern maximum, located in the hologram plane, to 
its minimum.  

It follows from the above analysis that the 
formed interference patterns, characterizing 

longitudinal displacement of the scatterer, localize in 
two planes, i.e., the hologram and Fourier ones, like 
in the holographic interferometer.1 However, in the 
considered holographic interferometer, an interference 
pattern localized in the scatterer-imaging plane, is 
formed in the Fourier plane, where subjective speckles 
of two exposures are identical due to spatial filtration 
of the diffraction field in the hologram plane. In this 
case, the interferometer sensitivity to the longitudinal 
displacement of the scatterer depends on the 

microscope focal length and the curvature of the 
spherical wave of the coherent radiation, used for 
scatterer illumination while recording the hologram. 
In its turn, the interferometer sensitivity to the 
interference pattern, localized in the hologram plane 
and recorded in the plane of its imaging, where 
identical speckles of two exposures are formed while 
spatial filtering in the Fourier plane, depends on the 
microscope focal length. 

In addition, similarly to the holographic 
interferometer,1 the absence of the fringe parallax is 
characteristic for the longitudinal displacement control 
in the considered interferometer. Here the mechanism 
of interference pattern formation is connected with 
the slope angle of the subjective speckles, corresponding 

to the second exposure, radially varying from the 
optical axis, in the hologram plane, while in Ref. 1 it 
is also connected with speckle extension in the 
hologram plane. 

In our experiment, double-exposure quasi-Fourier 
and Fourier holograms were recorded on Mikrat VRL 
photoplates by means of 0.6328 μm He–Ne laser 
radiation; microscope parameters were the following: 
f1 = 50 mm, f2 = 90 mm, Δ = 100 mm, d1 = 15 mm, 
d2 = 20 mm. The angle θ = 11° for a plane reference 
beam of 35 mm in diameter. The curvature range was 
30 ≤ ⏐R⏐ ≤ ∞ for divergent and convergent spherical 
waves of the coherent radiation, used for illumination 
of the opaque screen; the diameter of illuminated 
area was 20 mm. The experimental technique consisted 
in comparison of hologram records for fixed values of 
transversal a = (0.02 ± 0.002) mm and longitudinal 
Δl = (0.5 ± 0.002) mm displacements of the scatterer. 
  Figure 4 shows the interference patterns, 
localized in the Fourier plane, where the image of 
opaque screen is formed, and characterizing transversal 
displacement of the screen. The interference patterns 

were recorded in the lens focal plane with f 0
′  = 50 mm 

when spatial filtering the diffraction field in the 
hologram plane by means of its reconstruction with a 
small-aperture (≈ 1 mm) laser beam. The opaque 
screen was illuminated by the coherent radiation with 
convergent (R = 70 mm, Fig. 4à) and divergent 
(R = 45 mm, Fig. 4b) spherical waves. The letter 
“T” (blowup and flip image in the Fourier plane) 
was preliminary drawn on the opaque screen and the 
mark “2” – on the L2 lens side (see Fig. 1). 

 

 
 à b 

Fig. 4. Interference patterns localized in the plane of 
scatterer imaging and characterizing its transversal 
displacement: the scatterer is illuminated by radiation with 
convergent (à) and divergent (b) spherical waves. 

 

The interference pattern, localized in the hologram 
plane and characterizing the transversal displacement 
of the scatterer, is shown in Fig. 5a. It was recorded 
at illuminating the hologram (see Fig. 3) by a 
collimated beam of 30 mm in diameter; spatial 
filtration of the diffraction field was carried out in 

the focal plane of the lens L 0
′  (see Fig. 3) of 40 mm 

in diameter and 200 mm in focal length. In this case, 
the spatial extension of the interference pattern, 
localized in the hologram plane, was 9 mm and 
corresponded to the calculated value. 

The periods Δõ5 and Δõ6 of the fringes, localized 
both in the Fourier and hologram planes, were 
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calculated for the known variables λ, a, R, f, f 0
′ and 

compared with measurement results. They agree to 

each other up to 10% error, allowable in the 

experiment. 
 

 
 à b 

Fig. 5. Interference patterns localized in the hologram plane 
and characterizing transversal (a) and longitudinal (b) 
displacement of the scatterer. 

 
The interference patterns in Fig. 6 are localized 

in the plane of opaque screen imaging and characterize 
its longitudinal displacement, when the scatterer is 
illuminated by the coherent radiation with convergent 
(R = 50 mm, Fig. 6à) and divergent (R = 40 mm, 
Fig. 6b) spherical waves at the stage of hologram 
recording. The pattern was recorded similarly to the 
interference patterns characterizing the transversal 
displacement of the scatterer and localized in the 
Fourier plane. 

 

 
 à b 

Fig. 6. Interference patterns localized in the Fourier plane 
and characterizing transversal displacement of the opaque 
screen in its illuminating by coherent radiation with 
convergent (à) and divergent (b) spherical waves. 

 
The interference pattern, localized in the hologram 

plane and characterizing the longitudinal scatterer 
displacement, corresponds to Fig. 5b; it was recorded 
similarly to the pattern, characterizing the transversal 
scatterer displacement and localized in the hologram 
plane. 

For the interference patterns in Fig. 6, the 

magnitude of transversal displacement is 

 ( )2 2 2 2 2

0 2 12 / – ,l R f f r r′Δ = λ  

where r1 and r2 are the radii of interference rings in 
the neighboring interference orders. Hence, the 
longitudinal displacement of the opaque screen was 

determined for the known variables: λ, R, f, f 0
′ and 

measured r1 and r2 and compared with value of 

Δl = (0.5 ± 0.002) mm. For the interference pattern in 
Fig. 5b, the longitudinal displacement Δl = 

2 2 2

2 12 /( ).f r r′ ′= λ −  In this case, the longitudinal 

displacement of the opaque screen was determined for 
the known λ, f, and the value of spatial extension of 
the interference pattern, allowing measurements of 
the ring radii in the neighboring interference orders, 
and compared with value of Δl = (0.2 ± 0.002) mm. 
They agree to each other up to 10% error, allowable 
in the experiment. 

It is evident from the above analysis of 
formation of the interference patterns, characterizing 
transversal or longitudinal displacement of the 
scatterer, that “frozen” fringes are localized in the 
Fourier hologram plane at its double-exposure 

recording with a microscope in case of combining 
longitudinal and transversal scatterer displacements. 
This is explained by the combination of only 

homogeneous and axisymmetric inhomogeneous 
(radially varying from the optical axis) slopes of the 
subjective speckle-field, corresponding to the second 
exposure, in the hologram plane relative to the 
speckle-field of the first exposure in case of the 
double-exposure recording of the Fourier hologram 
with a positive lens, when a photoplates is in its back 
focal plane.  

The interference pattern, localized in the Fourier 
hologram plane and characterizing the transversal 
scatterer displacement to à = (0.02 ± 0.002) mm and 
longitudinal one to Δl = (0.5 ± 0.002) mm, is shown in 
Fig. 7. It was recorded without spatial filtration of 
the diffraction field. 

 

а

 
 

Fig. 7. Interference patterns localized in the Fourier hologram 

plane and characterizing transversal and longitudinal 
displacement of a flat diffusively scattering surface. 

 
Thus, results of the analysis of formation of the 

interference patterns, characterizing longitudinal or 
transversal displacements of a flat diffusively 

scattering surface, at double-exposure recording of 
quasi-Fourier and Fourier holograms using a 
collimating microscope, and the experimental study 
show the following. 

At the stage of double-exposure quasi-Fourier 
hologram reconstruction, the interference patterns, 
characterizing both transversal and longitudinal 
displacement of the scatterer, are localized in the 
hologram plane and the Fourier one, where the 
scatterer is imaged. In this case, the interferometer 
sensitivity to the interference pattern, localized in the 
Fourier plane, depends on the curvature of a spherical 
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wave of the coherent radiation, used for the scatterer 
illumination while recording the hologram, and the 
microscope focal length. For the interference pattern, 
localized in the hologram plane, the interferometer 
sensitivity depends on the microscope focal length. 
Besides, in case of recording in the plane of 
localization of the interference pattern, characterizing 
transversal scatterer displacement, the fringe parallax 
takes place due to the homogeneous displacement of a 
component of the subjective speckle, corresponding 
to the second exposure, in the hologram plane. The 
parallax is absent in recording the interference 
patterns, characterizing the longitudinal scatterer 
displacement.  

Double-exposure recording of the Fourier 
holograms using a microscope was accompanied by 
formation of “frozen” interference patterns in the 
hologram plane, which were recorded without spatial 
filtration of the diffraction field. 
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