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The sensitivity of a speckle interferometer to transversal or longitudinal displacements of a 

plane surface, diffusely scattering the light, is analyzed for the case when a positive lens is used at 
the stage of recording of a double-exposure specklogram. The interferometer’s sensitivity is shown to 
depend on the curvature radius of a spherical wave of the coherent radiation illuminating the surface. 
The interferometer sensitivity to longitudinal displacement depends on the scale of the Fourier 
transform of the function, which characterizes the complex transmission (or reflection) amplitude of 
a scatterer. Experimental results correspond to theoretical prerequisites. 

 

 
In the double-exposure recording of quasi-

Fourier and Fourier holograms with a positive lens 
for the control for the transversal displacement of a 
plane surface, which diffusely scatters the light, the 
mechanism of formation of interference patterns in 
diffracting fields, as it was shown in Ref. 1, is caused 
by both uniform displacement of subjective speckles 
of the second exposure in the hologram plane relative 
to the identical speckles of the first exposure and 
their slope. At the stage of retrieval of the record, 
this leads to localization of interference patterns in 
two planes: in the hologram plane and in the Fourier 
plane. At the spatial filtering of the diffraction field, 
the interferometer’s sensitivity to transversal 
displacement of a scatterer in the planes of localization 
of the interference patterns turns to be different. 

In case of controlling for longitudinal displacement 
of the plane surface, diffusely scattering the light, on 

the one hand, a non-uniform displacement of subjective 
speckles, corresponding to the second exposure relative 
to the identical speckles of the first exposure due to 
difference in scales of Fourier transforms in the 
hologram plane of complex amplitudes of transmission 
(or reflection) of the scatterer takes place. On the 
other hand, the presence of slopes of subjective 
speckles, corresponding to the second exposure relative 
to the identical speckles of the second exposure, 
which vary by radius off the optical axis, causes the 
interference pattern localization in the hologram 
plane and Fourier plane. In spatial filtering of the 
diffraction field, the interferometer sensitivity to the 
scatterer longitudinal displacement in planes of 
localization of interference patterns turns to be 
different. Thus, there appears a necessity to elucidate 
peculiarities in correlation of intensity distributions 
of light, scattered by a surface in the initial and 
shifted positions of the scatterer based on distributions 
of field complex amplitudes in the plane of the 
photographic plate.1 

In this paper, the formation of speckle interference 
patterns characterizing transversal or longitudinal 
displacements of a plane surface diffusely scattering 
the light is under analysis. The goal of the analysis is 
to determine interferometer sensitivity in the case 
when a positive lens is used at the stage of double-
exposure recording of the specklogram. 

According to Fig. 1, the matte screen 1 lying in 
the plane (õ1, ó1) is illuminated by the coherent 
radiation with the divergent spherical wave of the 
curvature radius R. The radiation, scattered diffusely 
by the screen, passes through the thin positive lens L 
with the focal length f and is registered by the 
photographic plate 2 lying in the plane (õ3, ó3) for 
the time of the first exposure. Before the second 

exposure in the case of control for transversal 
displacement, the matte screen is displaced in its 
plane, for instance, by the magnitude à in the 
direction to the õ axis. 
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Fig. 1. Schematic of double-exposure specklogram recording: 
matte screen 1; photographic plate 2; positive lens L; 
aperture diaphragm ð. 

 

With allowance for diffraction restrictions,1 
distributions of complex amplitudes of fields, 
corresponding to the first and second expositions, in 
the plane of the photographic plate in the Fresnel 
approximation take the form 
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where ⊗ is the convolution; k is the wave number; l1, 
l2 are, respectively, distances between the planes 
(õ1, ó1), (õ2, ó2) and (õ2, ó2), (õ3, ó3); (õ2, ó2) is the 
principal plane of the positive lens L; Lð is the 
geometrical parameter of the optical system satisfying 
the condition 1/Lð = 1/l1 – 1/f + 1/l2 > 0, i.e., 
f > l1l2/(l1 + l2) (here Lð < ∞ because the condition 
Lð = ∞ corresponds to formation of a real image of 
the scatterer; 1/l = 1/R + 1/l1 – Lð/l 

2

1 is a 

designation for brevity; F(õ3, ó3) is the Fourier 
transform of the function t(õ1, ó1), which characterizes 
the complex transmission amplitude of the matte 
screen and is a random function of coordinates, with 
the spatial frequencies Lðx3/λl1l2, Lðy3/λl1l2; λ is the 
wavelength of a coherent source of the light used for 
specklogram recording and reconstruction; P(õ3, ó3) is 
the Fourier transform of the pupil function2 p(õ2, ó2) 
of the positive lens L with the spatial frequencies 
x3/λl2, y3/λl2; r is radius of curvature of the 
spherical wave. The value and sign of the radius  
are presented in Ref. 1. However, in the case of 
square location of the field in the plane (õ3, ó3) the 

exponential multiplier exp[ik(x 

2

3 + y 

2

3)/2r] is of no 
importance. 

It follows from Eqs. (1) and (2) that for  
exp[–iklL
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2] ≠ δ(õ3, ó3), (δ(õ3, ó3) is the 
Dirac delta) a quasi-Fourier transform of the function 
t(õ1, ó1) is formed in the plane of the photographic 
plate. Within the diameter3 D ≤ dl2/Lp, where d is 
the pupil diameter of the positive lens L, every point 
of the transform is broadened to the size of a 
subjective speckle, defined by the width of the 
function P(õ3, ó3), when the diameter D0 of the 
illuminated area of the matte screen satisfies the 
condition D0 ≥ dl1/Lp, which is necessary for spatial 
boundedness of the scattered field. Besides, according 
to Eq. (2), the subjective speckles are uniformly 
shifted by the value al1l2/lLp and sloped by the 
angle aLp/l1l2 as compared to the distribution of the 
complex amplitude of the field in Eq. (1). 

For the double-exposure recording of the 

specklogram, the distribution of its complex 

transmission amplitude at the linear part of the 
density curve of the photographic material is defined 
by the expression 
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where c.c. denotes the complex conjugate value. 
As in Ref. 1, we take into account a particular 

case (l2 = f), which has specific features in formation 
of interference patterns. For this case, distributions 
of complex amplitudes of fields in the plane (õ3, ó3), 
which correspond to the first and second exposures 
and distribution of the complex transmission amplitude 
for a double-exposure specklogram take the form 
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where 3 3( , ),F x y�  3 3( , )P x y�  are, respectively, Fourier 
transforms of functions t(õ1, ó1), p(õ2, ó2) with spatial 
frequencies x3/λf, y3/λf. 

It follows from Eqs. (4) and (5) that at R ≠ ∞, a 
quasi-Fourier transform of the function t(õ1, ó1) is 
formed in the plane of the photographic plate within 
the diameter .D d≤�  If the matte screen is illuminated 
by coherent radiation of diameter ≥

�

0 ,D d  then every 
point of the transform is broadened up to the size of 
the subjective speckle, which is defined by the width 
of the function 3 3( , ).P x y�

 Besides, the subjective 

speckles corresponding to the second exposure are 
uniformly shifted by the value af/R and sloped by 
the angle a/f. 
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When retrieving the double-exposure specklogram 
characterizing transversal displacement of the scatterer 
at l2 ≠ f, the distribution of the field complex 
amplitude in the Fourier plane (õ5, ó5), according to 
Fig. 2 in Ref. 4 with the use of substitution of 
Eq. (3) into Eq. (4) from Ref. 4 and accounting for 
the evenness of the function p(õ2, ó2), is defined by 
the expression 
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where f0 is the focal distance of the positive lens L0 
[Ref. 4, Fig. 2]; P0(õ5, ó5) is the Fourier transform of 
the pupil function ð0(õ4,ó4) of the positive lens L0 

with the spatial frequencies x5/λf0, y5/λf0 (the 
designations correspond to Ref. 4). 

Based on the conclusion from Ref. 4, at a small 
value of the transversal displacement of the scatterer, 
when the value f0Lpa/l1l2 is much less than the radius 
of the positive lens L pupil (see Fig. 1), the substitution 

of p(l2x5/f0 ± Lpa/l1, l2y5/f0) ≅ p(l2x5/f0, l2y5/f0) in 
Eq. 7 yields the visibility of the interference pattern 
in the Fourier plane not differing much from 1. Then, 
on the base of the well-known identity5

 and assumption 
that the period of the function 1 + exp(ikl1l2ax5/f0lLp) 
exceeds the size of the subjective speckle in the plane 
(õ5, ó5) at least by an order of magnitude,6 the 

illumination distribution in the plane takes the form 
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As follows from Eq. 8, the subjective speckle 
structure in the Fourier plane within the area defined 
by the width of the function p(l2x5/f0, l2y5/f0) ⊗ 
⊗ p(l2x5/f0, l2y5/f0) has been modulated by 
interference fringes arranged equidistantly along the 
x axis. Measurement of their repetition period makes 
it possible to determine the value of the transversal 
displacement of a plane diffusely scattering the light 
for the known parameters λ, l1, l2, l, Lp, f0. The 
frequency of speckle interference fringes depends on 
the value and sign of the curvature radius of the 
coherent radiation spherical wave, which is used for 
illumination of the scatterer at the stage of the 
specklogram double-exposure recording. 

If l2 < f, then the period Δx 

′
5 = λf0/a(1 – l2/f + 

+ l1l2/LpR) of speckle interference fringes decreases 
with the increase of the curvature radius of the 
divergent spherical wavefront of the coherent radiation 
used for illumination of the scatterer at the stage of 
recording the specklogram. This is explained by the 
increase of displacement of its subjective speckles 
corresponding to the second exposure as compared with 
the identical speckles of the first exposure. Further, 
when the scatterer is illuminated by a coherent 
radiation with a convergent spherical wave, the period 

x 

′′
5  = λf0/a(1 – l2/f – l1l2/LpR) of speckle interference 

fringes increases with the decrease of the curvature 
radius R within the limits l 

2

1/(l1 – Lp) ≤ R ≤ ∞ up to 
infinity at R = l 

2

1/(l1 – Lp). At the stage of recording 
the specklogram, the Fourier transform of the complex 
transmission (or reflection) amplitude of a plane 
surface, which diffusely scatters the light, is formed 
in the plane of the photographic plate. 

When the Fourier transform of the function 
t(õ1, ó1) is formed in the plane of the specklogram, 
there is no displacement of subjective speckles 

corresponding to the second exposure, just as in 
Ref. 7, where formation of the Fourier transform is 
possible only under illumination of the scatterer by 
coherent radiation with a convergent wavefront. 
Further decrease of R leads to appearance and increase 
of displacement of subjective speckles corresponding 
to the second exposure (relative to the identical 
speckles of the first exposure) in the plane of the 
specklogram. As a result, the frequency of speckle 
interference fringes increases. 

As an example, the frequency of speckle 

interference fringes is presented in Fig. 2 as a function 
of the value and sign of R for the following fixed values: 
λ = 0.6328 μm, à = 30 μm, f = 220 mm, l1 = 350 mm, 
l2 = 100 mm, f0 = 50 mm. 

If l2 > f, then the period Δx 

′
5 = λf0/a(1 – l2/f – 

– l1l2/LpR) of speckle interference fringes increases 
with decrease of the curvature radius of a divergent 
spherical wavefront of a coherent radiation used  
for illumination of the scatterer at the stage of 
recording the specklogram, within the limits  

l 

2

1/(l1 – Lp) ≤ R ≤ ∞ up to infinity as R = l 

2

1/(Lp – l1). 
  Fulfillment of the condition R = l 

2

1/(Lp – l1) 
corresponds to formation of the Fourier transform  
of t(õ1, ó1) in the specklogram plane and the absence  
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of displacement of subjective speckles of the second 
exposure relative to the identical speckles of the first 
exposure in this plane. Further decrease of R leads  
to appearance and increase of the displacement of 
subjective speckles corresponding to the second 

exposure in the specklogram plane. As a result, the 
frequency of speckle interference fringes increases. In 
its turn, if the scatterer is illuminated by coherent 
radiation with a convergent spherical wave at the stage 

of the double-exposure recording of the specklogram, 

the period Δx 

′′
5  = λf0/a(1 – l2/f + l1l2/LpR) of speckle 

interference fringes decreases with the decrease of R. 
This is connected with increase of displacement of 
subjective speckles of the second exposure in the 
specklogram plane. 
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Fig. 2. Frequency of speckle interference fringes as a 
function of the curvature radius of a divergent spherical 
wavefront (1); of a convergent wavefront (2), for the case 
of a positive lens with f = 220 mm. 

 

Figure 3 presents the frequency of speckle 
interference fringes as a function of the value and sign 
of R for the fixed values: λ = 0.6328 μm, à = 30 μm, 
f = 170 μm, l1 = 180 mm, l2 = 300 mm, f0 = 50 mm. 
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Fig. 3. Frequency of speckle interference fringes as a 
function of the curvature radius of a divergent spherical 
wavefront (1) and a convergent wavefront (2) for the case 
of a positive lens with f = 170 mm. 

 

In a particular case at l2 = f, when reconstructing 
the double-exposure specklogram characterizing 

transversal displacement of the plane surface 
diffusely scattering the light, the distribution of the 
complex amplitude of the field in the Fourier plane 
(õ5, ó5) with allowance for the substitution of Eq. (6) 
into Eq. (4) from Ref. 4, is defined by the expression 
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on the base of which the distribution of illumination 
in the plane takes the form 
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According to Eq. (10), the period 5 0x f R afΔ = λ�  

of speckle interference fringes in the Fourier plane 
within the area, defined by the width of the function 
p(fx5/f0, fy5/f0) ⊗ p(fx5/f0, fy5/f0) does not depend 
on the sign of the curvature radius of the spherical 
wavefront of coherent radiation used at the stage  
of recording the double-exposure specklogram. The 

frequency of speckle interference fringes increases with 
the decrease of the value ⏐R⏐ due to the increase of 
displacement of subjective speckles corresponding to 
the second exposure relative to the first exposure in 
the specklogram plane. The displacement is absent 
for R = ∞, when the Fourier transform of t(õ1, ó1) is 
formed in the plane of the photographic plate at the 
stage of recording.8 

Suppose that, at the stage of reconstruction  
of a double-exposure specklogram, characterizing 

transversal displacement of the scatterer, the 

specklogram is shifted, for instance, along the õ axis 
by the value õ03. Then the distribution of the 
complex amplitude of the field in the plane (õ3, ó3) is 
defined by the expression 
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If we substitute Eq. (11) into the formula (4) 
from Ref. 4, the distribution of the complex amplitude 
of the field in the Fourier plane (õ5, ó5) takes the 
form 
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on the base of which the illumination distribution in 
the plane is determined by the expression 
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It follows from Eq. (13) that at the stage of  
the speckle interference pattern reconstruction its 

displacement in the plane (õ3, ó3) does not lead to 
changes in the position of speckle interference fringes 
(a "frozen" interference pattern). Therefore, due to 
the absence of interference fringes’ parallax and with 
allowance for the fact that the constant component of 
transmittance of the speckle interference pattern 
occupies a small domain in the space, there is no 
necessity to perform spatial filtration of the 
diffraction field in recording the speckle interference 
pattern, which characterizes the transversal 
displacement of a scatterer. 

Comparison of the considered speckle 

interferometer and the holographic interferometer,1 in 
which the control for transversal displacement of a 
plane surface, diffusely scattering the light, is realized 
by registration of the interference pattern, localized 
in the Fourier plane, demonstrates their similar 
sensitivity. This is explained by similar nature of the 
mechanism, by which interference patterns are formed 
in diffusely scattered fields. The mechanism is 

connected with uniform displacement of subjective 
speckles, corresponding to the second exposure in the 
plane of the hologram or speckle interference pattern. 
At the stage of reconstruction of the hologram or the 
speckle interference pattern, overlapping of identical 
subjective speckles of two exposures is realized in the 
Fourier plane. The difference is that in the holographic 
interferometer1 an interference pattern is recorded 
with spatial filtration of the diffraction field in the 
hologram plane, while the recording of a speckle 
interference pattern does not require the spatial 
filtration of the diffraction field. Besides, in the 
speckle interferometer, the threshold of the sensitivity 
to displacement of a scatterer is lower due to spatial 
increase of the speckle interference pattern.9 

In the experiment, the double-exposure speckle 
interference patterns were recorded on Mikrat-VRL 
photographic plates irradiated by a He-Ne laser at a 
wavelength of 0.6328 μm. Besides, we used a positive 
lens with a focal length f = 220 mm, pupil diameter 
d = 11 mm and a positive lens with a focal length 
f = 170 mm and d = 25 mm. For the first lens, the 
distances l1, l2 were 350 and 100 mm, respectively, 
and for the second lens 180 and 300 mm. The diameter 
of the illuminated area of the matte screen D0 was 
50 mm. The experimental technique of the study 
consisted in comparison of double-exposure speckle 
interference patterns recorded for a fixed transversal 
displacement à = (0.03 ± 0.002) mm of the matte 
screen. The different curvature radiuses of the 
spherical wave of radiation used to illuminate the 
scatterer ranged within 120 ≤ ⏐R⏐ ≤ ∞. 

As an example, figure 4 shows speckle interference 
patterns located in the focal plane of the lens with  
a focal length f0 = 50 mm, pupil diameter 17 mm. 
 

 
 a b c 

Fig. 4. Speckle interference patterns characterizing 
transversal displacement of a scatterer, when at the stage of 
recording the speckle interference pattern with a positive 
lens with f = 220 mm the matte screen was illuminated by 
radiation: with a plane wave (à); with a spherical divergent 
wave (b); with a spherical convergent wave (c). 

 

Figure 4a corresponds to the case when the matte 
screen at the stage of recording the double-exposure 
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speckle interference pattern is illuminated by a 

collimated beam, whereas Figure 4b corresponds to 
radiation with a divergent spherical wave of a 

curvature radius R = 350 mm, Figure 4c corresponds 
to a convergent spherical wave with R = 350 mm. 
  In these cases, like in the following ones connected 
with changes of the value and sign of the curvature 
radius, periods of interference fringes were measured 
(in addition to the fact that they could be determined 
from measurements of R for known λ, a, f, l1, l2, f0). 
The values of the frequency of interference fringes 
obtained in such a way corresponded to Fig. 2 up to 
10% of the allowable experimental error. 

Speckle interference patterns in Fig. 5 and located 
in the focal plane of the lens with a focal length 

f0 = 50 mm and pupil diameter 17 mm characterize 
the transversal displacement of the scatterer when a 
positive lens with a focal length f = 170 μm is used at 
the stage of the double-exposure recording of the 
speckle interference pattern. Figure 5a corresponds  
to the case when the matte screen is illuminated by  
a collimated beam, figure 5b to irradiation with a 
divergent spherical wave with a curvature radius 
R = 300 mm, figure 5c to a convergent wave with 
R = 300 mm. 

 

 
 a b c 

Fig. 5. Speckle interference patterns characterizing 

transversal displacement of the scatterer when the matte 
screen is illuminated by radiation with a plane wave (à); by 
a spherical divergent wave (b); by a spherical convergent 
wave (c). 

 

In these cases, as in the following ones, 
connected with the change of the value and sign of 
the curvature radius, periods of interference fringes 
were measured (in addition to the fact that they could 

be determined from measurements of R for known 

values λ, a, f, l1, l2, f0). Frequencies of interference 

fringes obtained in such a way correspond to Fig. 3 
up to an allowable experimental error (10%). 

In a particular case, when a photographic plate 
is in the back focal plane of the lens (l2 = f) at the 
stage of the double-exposure recording of a speckle 
interference pattern for the control for transversal 
displacement of the scatterer, the results of 
experimental study10

 correspond to the above-
mentioned theoretical prerequisites. 

Let the matte screen be displaced along the z 

axis by Δl << l1 before the second exposure of the 
photographic plate 2 (see Fig. 1). Then, on the base 
of Ref. 1, the distribution of the complex amplitude 

of the field in the plane of the photographic plate for 
the second exposure is determined by the expression 
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  (14) 

where F′(õ3, ó3) is the Fourier transform of t(õ1, ó1) 

with the spatial frequencies Lp
′õ3/λ(l1 + Δl)l2, Lp

′y3/ 

/λ(l1 + Δl)l2; Lp
′  = Lp(1 + LpΔl/l 

2

1); 1/l′ = 1/(l1 + Δl) + 

+ 1/(R – Δl) – Lp
′/(1 + Δl)2. 

According to Eq. (14), the subjective speckles 
corresponding to the second exposure are shifted by 
the radius off the optical axis relative to the identical 
speckles of the first exposure due to the difference in 
scales of the Fourier transforms F(õ3, ó3), F′(õ3, ó3) 
in Eqs. (1) and (14). Moreover, this different 
displacement of speckles does not depend on the 
curvature radius of the spherical wave of coherent 
radiation used for illuminating the scatterer. The 
slope of subjective speckles is defined by the presence 
of the multiplier exp[–ikL 

2

pΔl(x 

2

3 + y 

2

3)/2l 

2

1l 

2

2] in 
Eq. (14) and varies in radius off the optical axis also 
does not depend on the curvature radius. 

Orientation character of subjective speckles, in 
its turn, is of the kind that there is an additional 
change in radius off the optical axis of their slope, 
which depends on the radius of curvature of the 
wavefront in the plane (õ1, ó1) (see Figure 1) and is 
defined by the multiplier standing in Eq. (14) under 
the convolution integral. 

In general case, this leads to significant 

decorrelation of speckle structures of two exposures. 
This decorrelation is absent if the scatterer is 

illuminated by coherent radiation with a convergent 
spherical wave, whose curvature radius R′ = l 

2

1/(l1 – Lp), 
when l2 < f and the Fourier transform of t(õ1, ó1) is 
formed in the plane of the photographic plate, or by 
radiation with a divergent spherical wave with the 
above-mentioned curvature radius R′ and a quasi-
Fourier transform1 is formed in the plane of the 
photographic plate. 

If l2 > f, then the Fourier transform of t(õ1, ó1) 
is formed in the plane of the photographic plate under 

illumination of the scatterer by coherent radiation with 

a divergent spherical wave whose curvature radius is 
R′ = l 

2

1/(Lp – l1), or a quasi-Fourier transform of 
t(õ1, ó1) is formed in the plane of the photographic 
plate, irradiating by a convergent spherical wave with 
the above-mentioned curvature radius R′. Therefore, 
to prove the possibility of formation of a high-contrast 

speckle interference pattern, characterizing the 

transversal displacement of a plane surface diffusely 
scattering the light, we restrict ourselves by this  
value of the wavefront curvature radius R′. Then the 
distribution of the complex transmission amplitude 

τ′(õ3, ó3) of a double-exposure speckle interference 

pattern [Ref. 4, Fig. 4], ignoring the constant 
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component of transmission, which occupies a small 
area in the recording plane of the speckle interference 
pattern, takes the form 
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where spatial frequencies of the Fourier transform 

F′(õ3, ó3) correspond to the values Lpõ3/λl1l2(1 + Δl/R′), 
Lpy3/λl1l2(1 + Δl/R′). 

Like in Ref. 4, the distribution of the complex 
amplitude of the field in the plane (õ5, ó5) [Ref. 4, 
Fig. 4] in the Fresnel approximation is determined by 
the expression 
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which can be written3 in the form 
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where Lb is the geometric parameter of the optical 
system recording the speckle interference pattern (it 
satisfies the condition 1/Lb = 1/l3 – 1/f0 + 1/l4); 
Fb(õ5, ó5) is the Fourier transform of τ′(õ3, ó3) with the 

spatial frequencies Lbx5/λl3l4, Lby5/λl3l4, P0(õ5, ó5) is 
the Fourier transform of the pupil function p0(õ4, ó4) 
of the recording optical system [Ref. 4, Fig. 4] with 
the spatial frequencies õ5/λl4, y5/λl4. 

According to Eq. (17), a subjective speckle field 
is formed in the plane (õ5, ó5) with the speckle size 
defined by the width of P0(õ5, ó5). The phase 

distribution of a divergent spherical wave with the 
curvature radius l4 is superposed on this field. 

Substituting Eq. (15) into Eq. (17), we obtain 
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For Δl << R′ 
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and taking into account that τ′(õ3, ó3) is a real 
function, we have 
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Then, as a result of integral representation of 
convolution with the function exp[–ikL
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4] in Eq. (18), the distribution of the 
complex amplitude of the field in the plane (õ5, ó5) 
takes the form 
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where F1(õ5, ó5), F2(õ5, ó5) are, respectively, Fourier 
transforms of t(l1l2Lbξ/Lpl3l4, l1l2Lbη/Lpl3l4),  
t*(–l1l2Lbξ/Lpl3l4, l1l2Lbη/Lpl3l4) with spatial 
frequencies L

2
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2

4, L
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4; 
P′(õ5, ó5) is the Fourier transform of 
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on the coordinate is small, we factor it outside the 
convolution integral signs in Eq. (19). Besides, we 
assume that the size of a subjective speckle defined 
by the width of P0(õ5, ó5), is less

6 than the period of 

( )⎡ ⎤+ Δ + −⎣ ⎦
2 2 2 2 2 2 2 2 2

3 5 5 1 2 3 41 exp / ( )p b bikL L l l x y l l l L l  at least 

by an order of magnitude. Then, taking into account 
the integral representation of convolution with the 

function ( )2 2 2 2

5 5 3 4exp /2( )b bikL x y l L l⎡ ⎤+ −⎣ ⎦  in Eq. (19), 

the illumination distribution in the plane (õ5, ó5) is 
defined by the expression 
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If the distribution of the complex amplitude of 
the field corresponding to the Fourier transform of 
t(õ1, ó1) is formed at the stage of the double-exposure 
recording of the specklogram in the plane of the 
photographic plate, the illumination distribution in 
the plane of location of the speckle interference 
pattern takes the form 
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It follows from Eqs. (20) and (21) that the 
subjective speckle structure with åðó speckle size 
defined by the width of P0(õ5, ó5), is modulated 
within the area, whose diameter is defined by the 
width of the function ð(l2Lbõ5/l3l4, l2Lbó5/l3l4) ⊗ 
⊗ ð(l2Lbõ5/l3l4, l2Lbó5/l3l4), fringes of equal slope 
(the system of concentric speckle interference 
fringes). Measurement of their radiuses in the 
neighboring orders of interference provides for the 
determination of transversal displacement of a plane 
surface, diffusely scattering the light. Here, as in 
Ref. 4, the sensitivity of the interferometer depends 
on the magnitude that defines the scale of the Fourier 
transform of t(õ1, ó1). 

Besides, let us take into account that L
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2
, where 3 4( )/l l lµ = +

�

 is 
the coefficient of scale transformation in Ref. 4. This 
corresponds to adequacy of the used representation of 
the distribution (17) of the complex amplitude of the 
field to that taken in Ref. 4. The conditions Δl << R′ 

and Δl << 2 2 2 2

1 2 3 3( )/2 pbl l L l L l−  imply 2 2 2

1 2 /2 .pl l l L R′=
�  

Then, to locate the speckle interference pattern at the 
stage of reconstruction of the specklogram in the plane, 
localized in the near diffraction zone, the object 
plane of the lens L0 [Ref. 4, Fig. 4] must be placed at 

a distance 2 ,l�  and the specklogram, respectively, at a 

distance 3l l=

�  [Ref. 4]. 
Assume that at the stage of reconstruction of  

the double-exposure specklogram, characterizing the 
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longitudinal displacement of the scatterer, the pattern 
is shifted, for instance, along the õ axis by õ03. Then 
the distribution of the field complex amplitude in the 
plane (õ3, ó3) is defined by the expression 
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Determining the distribution of the field complex 
amplitude in the plane (õ5, ó5) of its location by the 
above-mentioned analysis, we obtain  
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Then, basing on Eq. (23), applying the above-
mentioned assumption on slow coordinate change  

of the function {{ 2 2 2
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account the integral representation of convolution with 
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, the 

distribution of illumination in the plane of location 
of the speckle interference pattern (õ5, ó5) can be 
rewritten as 
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If the distribution of the complex amplitude of 
the field in the plane of the photographic plate at the 
stage of the double-exposure recording of the 
specklogram corresponds to the Fourier transform of 
t(õ1, ó1), then the distribution of illumination in the 
plane (õ5, ó5) is defined by the expression  
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According to Eqs. (24) and (25), with allowance 
for the inequality l3 < Lb, longitudinal displacement of 
the specklogram at the stage of its reconstruction 
leads to displacement of the interference fringes in the 

direction opposite to the specklogram’s displacement 
due to the parallax phenomenon. 

In the particular case l2 = f, at the stage of the 
double-exposure recording of a hologram for control 
over longitudinal displacement of a plane surface 
diffusely scattering the light, the distribution of the 
complex amplitude of the field corresponding to the 
second exposure in the object channel has the form1 
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It follows from Eqs. (4) and (26) that slopes of 
the subjective speckles, corresponding to the second 
exposure, change only in radius off the optical axis in 
the plane (õ3, ó3) of the photographic plate, as 

compared with the identical speckles of the first 
exposure. As a result, the double-exposure recording 
of the specklogram is not accompanied by formation 
of a speckle interference pattern. 

Comparison of the holographic interferometer1
 

and the speckle interferometer, controlling the 

longitudinal displacement of a plane surface, diffusely 
scattering the light, demonstrates that mechanisms of 
interference pattern formation in these devices differ. 
In the holographic interferometer, the interference 
pattern is formed due to the change of slope angles in 
the hologram plane by the radius off the optical axis 
of the subjective speckles, corresponding to the 
second exposure with respect to the identical speckles 
of the first exposure. The formation of a speckle 
interference pattern in the speckle interferometer is 
caused by displacement of subjective speckles (varying 
by radius off the optical axis), corresponding to the 
second exposure with respect to the identical speckles 
of the first exposure. 

Besides, spatial filtering of the diffraction field 
is necessary for registering interference patterns in two 

devices. However, in the holographic interferometer, 
the diameter of the filtering aperture must cover 
identical speckles of two exposures. In the speckle 
interferometer, the necessity of spatial filtration of 

the diffraction field is caused by two reasons: on the 

one hand, to reduce in the plane of the speckle 
interference pattern’s location the area within which 

light intensity is concentrated due to the constant 

transmission component of the specklogram; on the 

other hand, due to parallax of interference fringes. 
In the experiment, double-exposure recording of 

specklograms was realized with positive lenses with 
the above-mentioned values of f, l1, and l2. At the 
stage of specklogram recording, the diameter of the 
illuminated area of the scatterer was 50 mm, and the 
curvature radius of the wavefront R′ was 212 mm, in 
the case of f = 170 mm and R′ = 533 mm in the case 
of f = 220 mm. Values of longitudinal displacements 
of the matte screen were chosen in the range 
Δl = (0.5 ± 0.002) – (3 ± 0,002) mm. 

Figure 6 presents speckle interference patterns 
located according to Ref. 4, Fig. 4 with lens focal 
distance f0 = 50 mm. At the stage of reconstruction 
of double-exposure specklograms, the diameter of the 
collimated beam was 2 mm, the object plane was at 

the distance of 3( )l l+
�  = 124 mm, and the distance l3 

was 62 mm. 
 

 

 
 a b c 

Fig. 6. Speckle interference patterns characterizing longitudinal 
displacement of the matte screen for the case when a 
positive lens with f = 170 mm was used at the stage of 
specklogram recording: Δl = 0.5 (à); 1 (b); 2 mm (c). 

 

Figure 7 presents speckle interference patterns 
when at the stage of recording specklogram the lens 
focal distance f = 220 mm was used. In this case, the 

object plane was at the distance 3( )l l+
�  = 160 mm, 

and the distance l3 to the specklogram was 80 mm. In 
comparison with Fig. 6, the viewing angle of the lens 
used in the experiment did not restrict the spatial 
extension of the diffraction halo, within the limits of 
which the speckle interference pattern was observed. 
 

  
 a b 

Fig. 7. Speckle interference patterns characterizing longitudinal 
displacement of the matte screen for the case when a positive 
lens with f = 220 mm was used at the stage of specklogram 
recording: Δl = 2 (à); 3 mm (b). 

 

The magnitude of the longitudinal displacement 
of the matte screen 2 2 2 2 2 2

1 2 2 12 ( – ),pl l l L r rΔ = λ μ  where 
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r1 and r2 are radii of the interference fringes in the 
neighboring interference orders, was determined for the 

measured radiuses with allowance for the coefficient of 
scale transformation μ = 1.49 in the case when the lens 
with f = 170 mm was used at the stage of specklogram 
recording and, respectively, μ = 2.2 at f = 220 mm. 
The calculational results correspond to the presented 

values of Δl up to 10% of allowable experimental error. 
Moreover, as follows from comparison of Figs. 6 and 
7, the sensitivity of the speckle interferometer with 
f = 170 mm, l1 = 180 mm, and l2 = 300 mm is higher 
due to less value of Lp/l1l2, which determines the 
scale of the Fourier transform of t(õ1, ó1) in the plane 
of the photographic plate. 

It is well-known (see, for instance, Refs. 11 and 
12) that the linear part of the characteristic curve of 
the photographic material blackening allows a multi-
exposure (as many as five exposures) recording of 
holograms or specklograms. Then the distribution  
of the complex transmission amplitude of a multi-
exposure specklogram by Δl, when illumination of the 
scatterer at the stage of recording is realized by a 
spherical wave with radius of curvature, necessary to 
form the Fourier transform of t(õ1, ó1) in the plane of 
the photographic plane, is determined by the expression 
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where N is the number of expositions; Fn
′ (õ3, ó3) is the 

Fourier transform of t(õ1, ó1) with the spatial frequencies 
Lpõ3/λl1l2(1 + nΔl/R′), Lpy3/λl1l2(1 + nΔl/R′). 

Substituting Eq. (27) into Eq. (17) under the 
assumption that (N – 1)Δl << R′ and following the 
above-mentioned analysis of formation of the speckle 
interference pattern for finding the distribution of 
the complex amplitude of the field in the plane of its 
location (õ5, ó5), we obtain 
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Taking into account the foregoing statements 
and assuming that the period of the function 
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the width of the function P0(õ5, ó5), at least by an 
order of magnitude, we write Eq. (28) in the form 
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on the base of which and with allowance for the 

designation ( ) ( )= + −
22 2 2 2 2 2 2 2

3 5 5 1 2 3 4/p b bA kL L l x y l l l L l , the 

illumination distribution in the plane of the 

interference pattern location (õ5, ó5) takes a brief form 
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For instance, figure 8a presents the speckle 
interference pattern corresponding to recording of 
five expositions with an interval of 0.5 mm when a 
positive lens with f = 170 mm is used. 

At the stage of specklogram reconstruction, just 
as in the case of speckle interference pattern location 
in Fig. 6, the object plane was at the distance of 
124 mm, whereas the distance from the specklogram 
was 62 mm. With increase of the latter by 30 mm, 
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the illumination distribution changes and does not 
correspond to Eq. (30). It is presented in Fig. 8b. 
 

  
 a b 

Fig. 8. Distribution of illumination in reconstruction of a 
multi-exposure specklogram: in the plane of the interference 
pattern localization (a), beyond the localization plane (b). 
 

Therefore, figure 8, just as experimental results,4 
shows the localization of the speckle interference 
pattern characterizing the longitudinal displacement 
of a plane surface, diffusely scattering the light in a 
certain plane in the near diffraction zone. Position  
of this plane is connected with ′=

�
2 2 2

1 2 /2 pl l l L R  and 

depends on the coefficient that defines the scale of 
the Fourier transform of the complex transmission  
(or reflection) amplitude of the scatterer in the 

specklogram plane. 
Like in the case, when a negative lens is used to 

control for longitudinal displacement of a scatterer4 in 

locating speckle interference patterns when specklograms 
are recorded by positive lenses, the parallax of 
interference fringes takes place (Fig. 9). 

 

  
 a b 

Fig. 9. Speckle interference patterns demonstrating the 
parallax of interference fringes in non-shifted (a) and 
shifted (b) positions of the specklogram at the stage of its 
reconstruction. 

 
Figure 9a corresponds to location of a speckle 

interference pattern presented in Fig. 8a, where as 
figure 9b corresponds to the case of the specklogram 
shifting by 5.5 mm. At such a shift, the phase of the 
interference pattern on the optical axis changes by π. 
  Thus, the theoretical analysis and experimental 
results demonstrate the following. 

In the case of speckle interference control for the 
transversal displacement of a plane surface, diffusely 
scattering the light, when a quasi-Fourier transform 
of the scatterer complex transmission (or reflection) 
amplitude is formed in the plane of the photographic 
plate with the use of a positive lens at the stage of 
specklogram recording, the interference pattern is 
localized in the Fourier plane and spatial filtration of  
 

the diffraction field is not required. The sensitivity of 
the speckle interferometer depends on the value and 
sign of the curvature radius of the spherical wavefront 
of coherent radiation used for illumination of the 
scatterer, as well as on the parameter, determining 
the scale of the Fourier transform of the scatterer 
complex transmission (or reflection) amplitude. In a 
particular case, when the photographic plate is in the 
lens’s back focal plane, the speckle interferometer 
sensitivity does not depend on the sign of the 
spherical wavefront curvature radius. 

To provide for the speckle interference control 
for the longitudinal displacement of a plane surface 
diffusely scattering the light, it is necessary to 
illuminate the scatterer at the stage of specklogram 
recording by a coherent radiation with a spherical 
wavefront with the curvature radius, which satisfies 

the condition of formation of the Fourier transform (or 

quasi-Fourier transform) of the complex transmission 
(or reflection) amplitude of the scatterer in the plane 
of the photographic plate. At the stage of specklogram 

reconstruction, the speckle interference pattern is 

localized in a plane, located in the near diffraction 

zone, and the task of its recording requires spatial 
filtering of the diffraction field. Besides, sensitivity 
of the speckle interferometer depends on the parameter, 
which determines the scale of the Fourier transform 
of the complex transmission (or reflection) amplitude 
of the scatterer in the plane of the photographic plate. 
In a particular case, when the photographic plate is 
in the back focal plane of the lens, the non-uniform 

(varying in radius off the optical axis) displacement of 
subjective speckles, corresponding to the second 
exposure relative to the identical speckles of the first 
exposure, is absent and the speckle interference pattern 
is not formed. 
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