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Current models of stochastic clouds are briefly overviewed. Generalized formulas of the 

method of closed equations are presented; they are designed for calculation of mean fluxes and 
brightness fields in the statistically homogeneous model of broken clouds, taking into account the 
molecular absorption and interaction of radiation with aerosols and underlying surface. The approach 
is described, developed for reduction of the laboriousness of computations of mean spectral fluxes in 
the near-IR wavelength range 0.7–3.6 µm, which combines methods of closed equations and dependent 
tests. Mean flux calculations in the statistically homogeneous Poisson cloud model are compared with 
results of simulation in fractionally integrated cascade and Gaussian models of broken clouds, earlier 
validated against realistic subgrid-scale cloud structures. 

 
Algorithms of the Monte Carlo method, designed 

for calculation of fluxes and brightness fields of the 
shortwave radiation in the deterministic atmosphere, 
both horizontally homogeneous and containing 

inhomogeneous clouds, were described in Part I of 
this paper.1 Part II discusses the problems concerning 
the simulation of the solar radiation transfer in the 
presence of stochastic clouds. A brief description of 
certain most often used models of stochastic clouds is 
there presented. The main attention is devoted to the 

statistically homogeneous model of broken clouds, 
based on the Poisson fluxes on the straight lines; it 
was developed at IAO SB RAS under the leadership 
of G.A. Titov. 

The algorithms of calculation of fluxes and 

brightness fields of solar radiation for the case of 
isolated broken clouds in the absence of molecular 
absorption were described earlier in Ref. 2. Part II 
presents generalized formulas for calculation of the 
average (over cloud realizations) radiation characteristics 
in the “aerosol – broken clouds – underlying surface” 
system. To decrease the laboriousness of the calculation 
algorithms for mean spectral radiative fluxes, taking 
into account the molecular absorption, a combination 
of the methods of dependent tests and closed equations 
is used. The paper presents approaches to comparison 
of radiative characteristics, calculated in the framework 

of different models of stochastic clouds: Poisson, 
Gaussian, and fractionally integrated cascade models, 
as well as discusses some results of the comparison. 
 

1. Stochastic cloud models 
 

As it was already noted earlier,1 two- (2D) and 
three-dimensional (3D) cloud realizations can be 

obtained presently on the basis of the models, which 
can be separated conventionally into “physical”  
and “mathematical,” in accordance with principles  
behind the simulation of mesoscale cloud fields. In 
classification of the existing mathematical models, we 
separate three groups: 

– the Gaussian model (Yu.A.R. Mullamaa, 
B.A. Kargin, S.M. Prigarin, and A.N. Rublev); 

– fractal cloud models, designed for imitation of 
complex geometrical shape of individual clouds 

(S. Lovejoy, A. Davis, P. Gabriel, D. Schertzer, 
G.A. Titov, and E.A. Babich) and simulation of liquid 
water path inside the overcast stratocumulus clouds 

(R. Cahalan, W. Wiscombe, A. Davis, A. Marshak, 
and others); 

– the model on the basis of Poisson point fluxes in 

the space and on straight lines (G.A. Titov, G.N. Glazov, 
V.N. Skorinov, T.B. Zhuravleva, and E.I. Kassianov) 

and model, suggested by G. Pomraning, F. Malvadgi, 
R. Byrne, and R. Somerville. 

Below, we give a brief description of the most 
often used cloud models. 

 

1.1. The Gaussian model of broken clouds 

 

Yu.A.R. Mullamaa and colleagues hypothesized 
that the cumulus clouds can be described on the basis 
of a stationary Gaussian process and created a 
theoretical-experimental model of the statistical 
structure of cumulus clouds.3 Numerical models of 
the cloud structure, intended for simulation of cloud 
field realizations and calculation of the radiative 
characteristics, are designed by B.A. Kargin and 
S.M. Prigarin,4 as well as by Rublev and coathors.5,6 
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  It is assumed that the cloud bottom boundary is 
defined by the plane z = H0, while the cloud top 
boundary z = w(x, y) is determined by the formula 
 

 ( )0( , ) max ( , ) – ,0 ,w x y H v x y c⎡ ⎤= + ⎣ ⎦  c > 0, 

where v(x, y) is a homogeneous Gaussian field with 
zero mean, correlation function K(x, y), and variance 
σ2 = K(0, 0). Selecting the input parameters c, σ, and 
K(x, y), the Gaussian model can be quite readily 
adjusted in such a way as to obtain the required 
cloud fraction N and mean vertical and horizontal 
cloud sizes. 

In the first numerical experiments for homogeneous 
isotropic fields the correlation function was determined 
as 

 ( )
1/2

2 2 2
0( , ) ,K x y J x y⎡ ⎤= σ ν +⎢ ⎥⎣ ⎦

 (1) 

J0 
is the Bessel function of first kind; ν is the 

parameter responsible for the horizontal cloud sizes, 
while the distribution of the geometrical cloud 

thickness H = w(x, y) – H0 was described by the 
truncated Gaussian distribution. The shape of the Í 
distributions was rigidly regulated by the model 
parameters, and the required mean H  value could be 
reached only through scaling with the use of the 
parameter σ.7 In such an approach, the difficulties 
were in the fact that with the use of K(x, y) in the 
form of (1), the configurations of the cloud field had 
too “regular” structure and real distributions of the 
cloud thickness could substantially differ for the 
truncated Gaussian distributions (see Ref. 7 and the 
bibliography therein). 

In this regard, S.M. Prigarin and A.L. Marshak7 
suggested a modification of the Gaussian model, 
which can be fitted to the results of the field 
observations. Input parameters of the modified model 
are the autocorrelation function of the cloud indicator 
field and distribution of the cloud field geometrical 
thickness. As satellite- and ground-based testing 
results have shown, the suggested method makes it 
possible to more adequately reproduce the real 
covariances of the cloud indicator field and distribution 
of its geometrical thickness; therefore, it is very 
promising for subsequent use. 

The principles, outlined by Prigarin and Marshak7 

(preliminary simulation of the Gaussian field on the 
basis of discrete Fourier transform and subsequent 
nonlinear transform of the Gaussian field), were used 
by Evans and Wiscombe,8 Venema et al.9 for simulation 
of three-dimensional field of cloud liquid water 

content (LWC). Note that, in contrast to the Gaussian 
models, which construct only the cloud field geometry, 
methods by Evans and Wiscombe8 and Venema et al.9 
make it possible to build the cloud indicator field, 
correlating with the optical characteristics of the 
cloud medium. 

 

1.2. Fractal models 
 

Recently, modelers develop a large class of fractal 
models, allowing them to take into account variations 

of some or another cloud characteristic (e.g., the 
geometrical shape or liquid water path (LWP)) in a 
wide range of scales. 

For imitation of complex geometrical shape of 
real cumulus clouds, which can be considered as a 
fractal structure, special methods of simulation are 
used (see, e.g., Refs. 10 and 11). Models of cumulus 
clouds close to cascade ones, taking into account the 
random geometry of individual clouds, were suggested 
by E.A. Babich and G.A. Titov: the simulation uses the 

sum of n independent homogeneous isotropic Gaussian 

fields with decreasing variances and correlation radii.2 
  As the measurements show,12–15 the distribution 
of liquid water inside marine stratocumulus clouds 
has the power-law spectrum 

 –( )E k k
β

∝  (2) 

as the spatial scale varies within, at least, three orders 
of magnitude (here k = π/r is the wavenumber and r 
is the scale in km). Taking this circumstance into 
account, R. Cahalan, A. Davis, S. Lovejoy, A. Marshak, 
D. Schertzer, W. Wiscombe, and others suggested 
fractal models of spatial distribution of the  
LWP, which make it possible to preserve the liquid  
water balance within the overcast cloud layer 

(singular and bounded cascades, fractionally 
integrated cascade model12–17). Each model realization 
is determined by the mean optical depth τ  (optical 
depth is related to LWP by the well-known formula 
τ = (3LWP)/(2ρref), ρ is the water density, and ref 
is the effective size of the cloud droplets), parameter 
p characterizing the variations of the optical depth 
σ
τ
, and the exponent β [see Eq. (2)]. 

The advantage of the fractal models is in the fact 

that via varying a small number of relatively easily 
measured input parameters, it is possible to obtain 

different structures of the liquid water distribution, 
whose spatial correlations correspond to the observed 

ones. The fractal models of cumulus clouds are also 
suggested by A. Benassi and colleagues (tdMAP 
method18), F. Di Giuseppe and A. Tompkins,19

 and 
others (see also http://i3rc.gsfc.nasa.gov/Public_ 
codes_clouds.htm). 

The simulation of the cloud realizations, which 
somewhat adequately describes the real cloud fields, 
is the first step in the study of features of radiation 
transfer in stochastic clouds. The next step is the 
solution of radiative transfer equation (RTE), for 
which the spatial distribution of optical characteristics 

(the scattering and extinction coefficients and the 
scattering phase function) is determined by a particular 
realization of the cloud field. 

For all of the above-mentioned physical and 
mathematical cloud models, the calculation of 
statistical characteristics of radiation is associated 
with the numerical RTE averaging whose essence  
lies in the simulation of a set of cloud realizations, 
RTE solution within each, and subsequent statistical 
processing of the calculated radiative characteristics. 
In such an approach, the computer time consumption 
depends significantly on the laboriousness of 
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construction of one realization. However, under 
certain physically based assumptions concerning the 
probabilistic properties of the cloud field, an 

analytical averaging of the radiative transfer equation 
is possible, which allows avoiding the simulation of 
many cloud realizations. 

For the first time, one of the variants of such an 
approach for the broken clouds was formulated by 
Avaste and Vainikko.20

 The equations for the moments 
of intensity under different assumptions on the 

properties of the radiation field were obtained by 
different research groups; however, the models by Titov 

and Pomraning are presently in most common use. 

 

1.3. Poisson model of broken clouds 

 

One-layer statistically homogeneous model of 
broken clouds on the basis of Poisson fluxes of points 
on the straight lines was described by Zuev and Titov2 
in detail. In the framework of this model (henceforth 
referred to as “Poisson”) the clouds are approximated 
by rectangular parallelepipeds with random horizontal 
sizes. The Poisson model is totally determined by the 
cloud fraction N, the geometrical cloud thickness H, 
and mean horizontal cloud size D; the input optical 
characteristics (extinction coefficient σ, single 

scattering albedo Λ, and scattering phase function in 
clouds) are assumed to be constant within all cloud 
elements and do not change from one cloud realization 
to another. When the geometrical cloud thickness H 
is fixed, the aspect ratio γ = H/D, more clearly 
characterizing the geometrical cloud field structure, 
is often used as the input parameter instead of the 
cloud diameter D. 

Under the assumption that the n-dimensional 
probability of cloud presence is factorizable, G.A. Titov, 
together with G.N. Glazov and V.N. Skorinov, have 
obtained a closed system of equations for the mean 
intensity and developed efficient algorithms of the 
system solution by the Monte Carlo method of closed 
equations (MCE). The accuracy and applicability 

limits of these equations were compared with the 
corresponding calculations by the method of numerical 
simulation. The results of the comparison showed 
that the equations for the mean intensity are quite 
accurate and can be used for study of the influence of 
random geometry on the radiative properties of the 
broken clouds. The main advantage of MCE is that 
the analytical averaging, it rests upon, requires much 
less computation time as compared to the numerical 
RTE averaging.2 

Let us present the relations, being the basis of 
simulation of mean fluxes and brightness fields under 
conditions of isolated broken clouds.2 Consider a 
cloud layer occupying the height interval Í0 = {0, H}, 
and assume that the unit solar flux is incident on the 

top boundary H in the direction ω� = (ξ�, ϕ�). Average 

(over the set of cloud realizations) collision density, 
f(x), satisfies the integral equation of the type [see 
Ref. 1, formula (3)] with the kernel 

 { }
2

1

( , ) ( ) exp – –i i i

i

k g D
=

′ ′=Λ μ η η ×∑x x r r  

 ( ){ } ( )2– – / – 2 –′ ′ ′× δ πr r r r r rω  (3) 

and the free term 

 { } ( )
2

1

( ) exp – – – .i i i H

i

C

=

ψ = η λ δ∑x r r �ω ω  (4) 

Here õ = (r, ω), ω = (a, b, c) is the direction of photon 

travel after scattering at the point r = (x, y, z); 
( ), – – ;′ ′ ′μ = ⎡ ⎤⎣ ⎦r r r rω  ( – )/ .H z H c= +r r ω  Values of 

Ci, Di, and ηi, i = 1, 2, are calculated by the formulas: 
 

 ( ){ }2

1,2 ( ) ( ) – 4 ( ) 2;A A A Nη = σ + σ + σ⎡ ⎤⎣ ⎦∓ω ω ω  

 D1 = (η2 – σ)/(η2 – η1), D2 = 1 – D1, 

 C1 = (η2 – σN)/(η2 – η1), C2 = 1 – C1. 

Value of A(ω) is determined from the relation:21 

 ( ) ,x y zA A a A b A c= + +ω  

   ⎡ ⎤= = +⎣ ⎦
21.65( – 0.5) 1.04 ,x yA A N D  Az = 0. 

Under assumption that the cloud optical 
characteristics are constant, the average intensity 

( , )I z ω  can be represented in the form of the linear 

functional Jh = (f, h) of the solution of the integral 
equation [see Ref. 1, formula (3)], taking into 
account Eqs. (3) and (4): 

 { }
=

Λ
′ ′= η ×

π
∑∫ω

2

1

( , ) exp – – / d
2

z

i i

iE

I z D c z
c

z z  

 ( )
π

′ ′ ′× μ + δ∫ �ω ω ω ω ω

4

( ) ( , ) d ( , ) – ,g f z j z  (7) 

where 

 { }
2

1

( , ) exp – – /i i

i

j z C z H c
=

= η∑ω  (8) 

is the average flux of the unscattered radiation. 
To evaluate Eq. (7), it is possible to apply the 

general theory of Monte Carlo methods,22 according 
to which Jh is determined by the mathematical 

expectation of the random quantity 

0

0

( ).

N

n n

n

Q h
=

η=∑ x  

From Eq. (7) it follows that the average intensity of 
radiation through the plane z = z*

 in the direction 

ω
*
 ≠ ω� can be calculated provided at each point 

xn = (rn, ωn–1) the quantity Qnh′(xn, ω
*) is calculated, 

where the weights Qn are given by formula (15) from 
Ref. 1, and 

(6)

(5)
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Average flux 

π

∫ ω ω

4

( , ) dc I z  through z = z* is also 

represented in the form of the linear functional of 
solution of equation [Ref. 1, formula (3)] with the 
weighting function of the form 

{ } ( )

( )

2

* *

1

*

exp , 0,
( )

0, 0.

i i n n n n

in

n n

D z z c z z c

h

z z c

=

⎧
−η − − >⎪⎪

= ⎨
⎪ − <⎪⎩

∑
x  

(10)
 

Formulas (9) and (10) were obtained by assuming 
that the layer of the broken clouds is isolated. 
Appendix presents the extension of these formulas for 
the calculation of the average fluxes in the system 
“aerosol – broken clouds – underlying surface.”23 

  Reference 24 presented the method of closed 
equations for the case of two-layer broken clouds 
under assumption that the random fields κi(r), i = 1, 2, 
constructed on the basis of Poisson flux of points on 
the straight lines, are independent and statistically 

homogeneous. (The assumption of independence of 
cloud fields is, as a rule, considered to be valid 
providing the clouds belong to different atmospheric 
levels: low, middle, and high). The developed 

algorithms make it possible to study the regularities 

of the radiative transfer in two-layer clouds and to 

estimate the applicability limits of the hypothesis on 

random/maximum cloud overlap, which is used in 
most (and, in particular, GCM) radiation codes. 

At the same time, observations show that the 
presence (absence) of clouds within different cloud 
layers may be interrelated.25 It is also well known 
that the clouds of one type (such as, Altostratus and 

Altocumulus) may be present simultaneously at 

different atmospheric levels, thus forming a multi-
layer (up to 4–6) system, in which the thickness of 
intercloud spaces range from a few tens of meters to 
one kilometer. 

This circumstance stimulates the development of 
models designed for the description of the correlated 
cloud fields. One such model, representing a 

generalization of the Poisson cloud model,26 uses as 
the input parameters the characteristics “responsible” 
for the correlation of the presence (or absence) of the 
cloud elements, belonging to different layers, and still 
being difficult to determine experimentally. 

Note that the lack of information on the 

probabilistic characteristics of the spatial structure of 
the cloud field is a common problem in building and 
testing of new models. The recently observed interest 

in the complex studies of complex cloud systems  
and intense development of the physical cloud 

parametrizations (for example, in the framework of 
LES models) give promise to believe that this 
information will be obtained in the immediate future 
and, hence, more adequate models of the multilayer 
clouds will be constructed. 

An ideologically close counterpart to the Poisson 
cloud model is the non-constructive model developed 
by G. Pomraning, F. Malvagi, R. Byrne, and 

R. Somerville (see, e.g., Refs. 27 and 28 among others). 
The system of equations with respect to the average 

intensity, obtained as a result of the analytical 
averaging of RTE, is solved by the discrete ordinate 

method. The input model parameters are LWP, the 
effective size of the cloud droplets ref, the cloud 
fraction N, the heights of the top and the bottom 
cloud boundaries, as well as the distribution density 
of horizontal cloud sizes and gaps between the clouds 

(clouds are approximated by ellipses). The dependence 

of the radiative characteristics on the cloud properties 
is discussed by Lane-Veron and Somerville.29 The 
model validation is performed on the basis of data of 
Lane et al.30; the calculated and measured fluxes of 
the downward shortwave radiation were in best 
correspondence under the conditions when the cloud 
fraction varied in range 0.25–0.7, while clouds 
occupied relatively thin cloud layer. We note that 
the model, in which the state of the atmosphere was 

represented as a binary mixture, was also used by 
Valentyuk.31 

 

2. Algorithms for calculation  
of statistical characteristics  

of broken clouds taking into account 
the molecular absorption 

 

Methods of accounting for the absorption by the 
atmospheric gases within one spectral interval Δλ 
under conditions of the deterministic atmosphere are 
described extensively [Ref. 1, section 4]. However, in 
computation of radiative characteristics for quite large 

set (a few tens or larger) of the spectral intervals Nint, 
it is advisable to use the method of dependent tests 
(MDT), whose essence is explained by Marchuk et 
al.22 Below, we outline the modifications of MDT, 
developed by us for calculation of the average (over 
a set of cloud realizations) spectral fluxes of solar 
radiation in the near-IR spectral range (0.7–3.2 μm).23 
These algorithms are based on the Monte Carlo 
solution of the system of the closed equations for the 
mean intensity in the statistically homogeneous Poisson 

model of broken clouds; the molecular absorption is 

taken into account through the transmission function 

of atmospheric gases TΔλ(l) [Ref. 1, subsection 4.1]. 
The suggested MDT modifications were also used by 
us for calculation of radiative characteristics in the 
horizontally homogeneous model of clouds. 
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2.1. Simulation of average spectral fluxes  
of radiation taking into account the molecular 

absorption: benchmark algorithm  
and method of dependent tests 

 

Let us present two algorithms designed for 
calculation of mean spectral radiation fluxes in the 
near-IR spectral region. 

Algorithm 1 is based on the division of the entire 
considered spectral range into Nint intervals in 
accordance with the specified spectral resolution Δλ. 
In each interval, the optical characteristics of clouds 
and aerosol, as well as Rayleigh scattering coefficients 
are assumed to be constant. The mean fluxes through 
the plane z = z*

 are calculated in each interval 
independently according to the following scheme 
[Ref.1, subsection 4.1]: 

– photon trajectories are simulated in the medium 
without accounting for the molecular absorption; 
  – the pathlength (or absorbing mass) is summed 
up along the photon trajectory until the collision at 
the point rn [Ref. 1, formula (24)]; 

– at the collision point rn, the quantity 

hz*(xn, ω
*)TΔλ(l

(n)
 + l) is calculated, where l = ⏐zn – z*⏐/ 

/⏐cn⏐ is the distance from the point rn to the plane 

z = z* along the direction ωn, while the function 

hz*(xn, ω
*) is defined by formula (10). (Formula (10) 

is used in calculations in isolated cloud layer and is 
given here just for simplicity of presentation. In fact, 
the calculations use generalizations of this formula to 
the case of the system “aerosol – broken clouds – 

underlying surface,” presented in Appendix). 
An obvious advantage of the algorithm 1 is in its 

ability to account for the spectral dependence of the 
optical parameters of clouds and aerosol in detail (for 
this reason, this method is considered as benchmark). 
At the same time, its obvious disadvantage is a 
considerable consumption of computer time for large 
values of Nint. For instance, for the spectral 
resolution Δν ≈ 10–20 cm–1 the number of the 
intervals (and, correspondingly, the number of 
independent calculations on the basis of MDT) in the 
range 0.7–3.2 μm is ≈ 400. 

Algorithm 2 is based on combination of the 
method of dependent tests22 and the method of closed 
equations.2 The mean collision density, satisfying 
equation [Ref. 1, formula (3)] with the kernel (3) 
and free term (4), as well as the weighting function 

(10), depend on the wavelength λ as the parameter. 
Obviously, the mth term of Neumann series [Ref. 1, 
formula (5)] can be written as follows: 

 ( , )m

K hλ λ λψ =  
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 (11) 

where ψ(õ0, λ0) and 0 0 0( , , ) ( , , )/ ( )k k′ ′λ = λ Λ λx x x x
�

 are 

the initial and transitional probability densities of 
the Markovian chain for the wavelength λ0, which 
will be called reference. Then, according to Ref. 22, 
the sought functional is defined by the formula of the 
type [Ref. 1, formula (8)]: 
 

 
0

*
,

1

( , )
N

n n

n

J M Q hλ λ

=

= λ∑ x  (12) 

with auxiliary weights  

 0, 0 0 0( , ) ( , ),Q∗

λ = ψ λ ψ λx x  

 , 1, 1 1 0( , , ) ( , , ).
n n n n n n

Q Q k k∗ ∗

λ − λ − −= λ λx x x x
�  

With accounting for Eqs. (3) and (4) formulas (13) 
are transformed to the form 

{ } { }
2 2

0 0 0
0, 1 0 1 0

1 1

exp – – exp – – ,i i i i i i

i i

Q C C∗

λ

= =

= η η η η∑ ∑r r r r

 

 { }
2

, 1, 1 ,

1

exp – –n n i i i n n n
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= Λ η η∑ r r  

 { } 0
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1

exp – – .i i i n n n

i

D g− λ

=

η η∑ r r  

Here gλ,n = g(λ, μn); μn = (ωn–1, ωn); r0 and rn are the 
points of entry and nth collision of the photon, 

respectively; 0
,iD  

0
,iC  and 0

iη  are the values of Di, Ci, 

and ηi, given by formulas (5) at λ = λ0, i = 1, 2. 
Formulas (14) are quite cumbersome from the 

viewpoint of computational time: since the extinction 
coefficient σ(λ) and the scattering phase function of 
clouds g(λ, μ) depend on the wavelength, at each step 
of the Markovian chain simulation it is necessary to 
simulate 2Nint exponential functions and Nint ratios 
{gλ,k/gλ0,k}, λ = {λi, i = 1, …, Nint} (or store the array 

of {gλ,k/gλ0,k}, requiring quite large memory). 
In the real liquid water clouds (in particular, 

cumulus clouds) the values of cloud extinction 
coefficient are quite large, while the fluctuations are 
not so considerable (about 10%, Fig. 1). Therefore, it 
can be expected that in formulas (14) the neglect of 
the spectral dependence of σ(λ) is admissible. 

The effect caused by the spectral dependence of 
the scattering phase function is associated with the 
dependence of the cloud single scattering albedo Λ(λ) 
on the wavelength. In comparison with σ(λ), Λ(λ)

 
depends on λ much stronger (see Fig. 1). For instance, 
the wavelength range 0.7–3.2 μm of our interest can 
be conventionally divided into 2 subintervals: 0.7–
2.6 μm, where Λ(λ) takes, predominately, quite high 

(13)

(14)
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values Λ(λ) ≥ 0.9, and 2.7–3.2 μm, within which 
Λ(λ) ≈ 0.5–0.6. 
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Fig. 1. The spectral behavior of extinction coefficient (1) 
and single scattering albedo (2) in clouds. 

 
It is well known that the contribution of the nth 

order of scattering to the calculated radiative 
characteristic is proportional to Λn(λ). When Λ(λ) is 
not large, the contribution of the nth order of 
scattering rapidly drops and the radiation, transmitted 
and reflected by the clouds (especially albedo of the 
cloud layer) is formed mainly by a few first orders of 
scattering. In this regard, it can be speculated that 
the spectral dependence of gλ(μ) is more significant in 
the subinterval 2.7–3.2 μm as compared to the 
subinterval 0.7–2.6 μm. 

With the last circumstance in mind, we suggested 
MDT modifications, designed for calculation of mean 
fluxes in spectral subintervals 0.7–2.7 and 2.7–3.2 μm. 
 

2.2. Numerical results 
 

The cloud optical characteristics are calculated 
in accordance with the Mie theory32 under assumption 
that the particle size distribution is approximated  
by the “wide” distribution of cloud droplets33; the 

refractive index of water was chosen in accordance 
with data from Ref. 34. The calculations were 

performed for M basic wavelengths whose values 
corresponded to local extrema of real and imaginary 
parts of the refractive index. For other wavelengths, 
the values of the optical characteristics were results 
of linear interpolation of the corresponding values, 
obtained for the basic set of wavelengths. The spectral 
behavior of the extinction coefficient and single 
scattering albedo of clouds is presented in Fig. 1. 
  The presented calculations take into account the 
absorption by water vapor and carbon dioxide on the 
basis of parameterizations of transmission functions, 
suggested in the works of B.M. Golubitskii, 
N.I. Moskalenko, and V.L. Fillipov and corresponding 
to the spectral resolution Δν = 10–20 cm–1

 (see 
Refs. 35–37). The relative humidity stratification 
corresponded to mean-zonal models38; carbon dioxide 
was assumed to be uniformly mixed with a 

concentration of 330 ppm. The aerosol component and 
Rayleigh scattering were neglected; and surface albedo 

As was zero. Irrespective of the wavelength, the 
illuminance E0(λ) of the top boundary H = 16 km was 

1: specification of radiative characteristics in relative 
units has made it possible to estimate the influence of 
molecular absorption of the atmosphere without 
accounting for the solar constant, which determines 
the contribution of a given spectral interval to the 
integrated characteristics. 

Wavelength range 0.7–2.7 µm. The sensitivity 
of mean fluxes to spectral variations of the extinction 
coefficient and scattering phase function in clouds  
is estimated from comparing the calculated results, 
obtained with use of the algorithms 1 and 2. According 
to our hypothesis, formulas (14) are transformed as 
follows: 

 

 0, 1,Q∗

λ =  , 1,( ) .
n n

Q Q∗ ∗

λ − λ= Λ λ  (14′) 

(Hereinafter, the modification of MDT on the basis 
of Eqs. (14′) will be called the algorithm 2A). 
Analysis of results has shown that, in the wide 
variability range of the extinction coefficient, aspect 
ratio γ, and solar zenith angle ξ�, the photon 

trajectory modeling can be made using one of the 
following scattering phase functions: 

 

λ μ λ = μ⎧
λ μ = ⎨

λ μ λ = μ⎩

1 1cl

cl

2 2cl

( , ), 0.708 m,
( , )

( , ), 2.503 m.

g
g

g
 

Mean fluxes of upward F↑(z = H) and downward 
diffuse F↓

s
(z = 0) radiation, calculated with the use  

of the algorithms 1 and 2A, are presented in Table 1 
together with the relative error δRC(2A), 
RC = {F↑(z = H), F↓

s
(z = 0)}, which characterizes the 

accuracy of the algorithm 2A relative to the 
benchmark calculations: 

 (2A) (1) (2A) (1)
100% – .RC RC RC RCδ =  

It follows from Table 1 that δR(2A) in the 0.7–2.6 μm 
subinterval is, on the average, within a relative 

calculation error of ≈ 3%. In the 2.6–2.7 μm 

subinterval, the cloud single scattering albedo rapidly 
drops (from 0.87 to 0.65, see Fig. 1), and the 
magnitude of δF↑,(2À)

 (z = H) considerably increases, 
reaching ≈ 20% at λ = 2.67 μm. The value of δF↓,(2A)

s

 (z = 0) does not exceed the relative calculation error 
throughout interval 0.7–2.7 μm. 

The performed analysis makes it possible to assess 

possibilities of using the algorithm 2A (formulas (14′)) 
for study of radiative characteristics in the cloudy 
atmosphere. If the spectral radiative fluxes are the 
subject of the study, then the accuracy of the suggested 
modification may turn to be unsatisfactory (in 

particular, this concerns interval 2.6–2.7 μm and, as 
it will be shown below, interval 2.7–2.8 μm). On the 
contrary, if we focus on the radiative characteristics 
integrated over a certain spectral interval, the use of 
the simpler algorithm 2A can be justified, because the 
contribution of the spectral interval to the total 
integrated quantity is determined by the weight of the 

solar constant, corresponding to this spectral interval. 
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Table 1. Results of calculations of mean fluxes of upward F↑(z = H)  
and downward diffuse F↓

s
(z = 0) solar radiation  

on the basis of the algorithms 1 and 2A at the boundaries of the cloud layer  
and the corresponding relative errors of the algorithm 2A. H = 0.5 km, D = 0.5 km,  

N = 0.5, ξ� = 60°, σ(λ = 0.708 μm)
 
= 30 km–1 

λ, μm 〈F↑,(1)〉 〈F↑,(2À)〉 δF↑,(2À), % 〈F↓,(1)
s

〉 〈F↓,(2A)
s

〉 δF↓,(2A)
s

, % 

0.708 0.393 0.393 0.0 0.386 0.386 0.0 
0.760 0.383 0.395 3.1 0.374 0.363 3.0 
0.797 0.395 0.405 2.5 0.382 0.370 3.1 
0.917 0.311 0.317 2.9 0.294 0.285 3.0 
0.980 0.365 0.366 0.3 0.342 0.332 2.9 
1.070 0.401 0.405 1.0 0.379 0.369 2.6 
1.202 0.299 0.295 1.3 0.271 0.264 2.6 
1.426 0.384(–1) 0.380(–1) 1.0 0.303(–1) 0.289(–1) 4.0 
1.613 0.336 0.329 2.8 0.292 0.295 1.0 
1.863 0.125(–2) 0.122(–2) 2.4 0.680(–3) 0.690(–3) 1.5 
1.875 0.214(–2) 0.203(–2) 5.0 0.120(–2) 0.112(–2) 7.0 
1.920 0.200(–2) 0.206(–2) 3.0 0.117(–2) 0.113(–2) 3.4 
2.020 0.162 0.168 3.7 0.132 0.143 7.5 
2.224 0.270 0.250 7.0 0.220 0.243 9.0 
2.383 0.171 0.166 2.9 0.139 0.141 1.4 
2.503 0.180(–1) 0.182(–1) 1.1 0.126(–1) 0.126(–1) 0.0 
2.600 5.64(–14) 5.98(–14) 6.0 1.80(–15) 1.78(–15) 1.0 
2.634 3.52(–13) 3.75(–13) 6.5 1.48(–14) 1.55(–14) 4.6 
2.670 1.01(–20) 1.20(–20) 20.0 5.42(–23) 5.35(–23) 1.3 

 
Since the contribution of the solar constant to interval 
2.0–3.0 μm is equal to ≈ 4.5%, the calculation error 
due to the use of Eqs. (14′) cannot significantly 
affect the integrated flux throughout spectral range 
0.7–2.7 μm. At the same time, it is obvious that, from 

the viewpoint of computation effort, the algorithm 2A 

is more efficient than the algorithm 2, and moreover, 
than the algorithm 1. 

Spectral range 2.7–3.2 µm. As it was noted 
above, the influence of the spectral dependence of the 
scattering phase function on the mean fluxes of solar 
radiation may appear more significant in this range 
than in range 0.7–2.7 μm. To test this hypothesis, we 
performed a series of calculations by applying the 
benchmark algorithm 1 and algorithm 2A with the use 
of the strongly different gcl(λ, μ), as well as the 
algorithm 2B, in which the spectral behavior of 
gcl(λ, μ) was taken into account and the spectral 
dependence of the extinction coefficient was neglected. 
According to Eqs. (14), the formulas for calculation 
by the algorithm 2B had the following form: 

 0, 1,Q∗

λ =  
0, 1, , , .n n n n

Q Q g g∗ ∗

λ λ − λ λ λ= Λ  (14′′) 

Due to the presence of the ratio gλ,n/gλ0,n in 

formula (14′′), the selection of the reference wavelength 

λ0, used for photon trajectory modeling, is especially 
important. The algorithm 2A is more efficient than 

2B. However, the analysis of the simulation results 
has shown that it is impossible to select a universal 
scattering phase function for the algorithm 2A as it 
was done for spectral interval 0.7–2.7 μm. Therefore, 
the use of simplified formulas (14′) in the interval 
2.7–3.2 μm was abandoned. At the same time, the 
results of the preliminary calculations show the ratio 
gλ,n/gλ0,n to be most close to 1 almost for all μn 

values at λ0 = 3.2 μm, which, hence, was chosen as  
a reference wavelength in the algorithm 2B.  
The convergence of the algorithm 2B was ensured by 
the fact that in the considered wavelength range  

2.7–3.2 μm, the cloud single scattering albedo 
Λcl ≈ 0.5–0.6. 

Results of calculations of the mean spectral fluxes 
with the use of the algorithms 1 and 2B, as well as the 
relative error of the algorithm 2B are presented in Table 2. 
 

 

 

Table 2. Results of the calculations of the mean fluxes of upward F↑(z = H) and downward  
diffuse F↓

s
(z = 0) solar radiation on the basis of the algorithms 1 and 2B at the boundaries  

of the cloud layer and the corresponding relative errors of the algorithm 2B.  
H = 0.5 km, D = 0.5 km, ξ� = 0°, σ(λ = 2.706 μm)

 
= 32.43 km–1 

λ, μm 〈F↑,(1)〉 〈F↑,(2Â)〉 δF↑,(2Â), % 〈F↓,(1)
s

〉 〈F↓,(2Â)
s

〉 δF↓,(2Â)
s

, % 

2.706 0.142(–8) 0.141(–8) 0.7 0.351(–9) 0.365(–9) 4.0 
2.728 0.137(–7) 0.122(–7) 10.9 0.938(–8) 0.959(–8) 2.2 
2.750 0.108(–8) 0.969(–9) 10.6 0.102(–8) 0.103(–8) 1.0 
2.796 0.197(–7) 0.178(–7) 6.8 0.430(–7) 0.398(–7) 7.4 
2.906 0.130(–2) 0.126(–2) 3.1 0.352(–2) 0.342(–2) 2.8 
3.095 0.261(–2) 0.260(–2) 0.5 0.527(–2) 0.53(–2)  0.5 
3.200 0.131(–2) 0.129(–2) 1.5 0.173(–2) 0.175(–2) 1.2 
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The comparison of the calculations shows that the 
algorithm 2B is usable within the spectral interval 
2.7–3.2 μm; more considerable deviations in the 
interval 2.73–2.79 μm do not have a significant effect 
on the calculation of integrated radiative fluxes in 
the wavelength range 2.7–3.2 μm. 

The suggested approach was further used by us 
to calculate spectral fluxes in the wavelength range 
0.7–3.6 μm. 

 

3. On validation of Poisson model  

of broken clouds 
 
A few stochastic models of the broken clouds, 

designed for the calculation of radiative characteristics 
of subgrid-scale cloud fields were described in 
subsection 2.1. The possibility of their application to 
study the process of radiative transfer in the broken 
clouds and parameterization of radiative properties of 
mesoscale cloud fields in the models of weather 
prediction and climate depends in many respects on 
results of the cloud model validation. The stochastic 
cloud models can be validated both on the basis of 
complex radiation measurements (see, e.g., Refs. 6, 30, 
and 39), and on the basis of other models, which 
already have passed validation (complete or partial) 
on realistic subgrid-scale spatial structures.40,41 

At the initial stage of validation of the Poisson 
model of the broken clouds, we had relatively small 
amount of the experimental data. These data were not 
complex, i.e., the radiative, optical, and geometrical 
cloud characteristics were not always measured 

simultaneously. Nonetheless, the comparisons of the 
calculated statistical characteristics of clouds and 
radiation have shown that, on the whole, this model 
correctly describes the solar radiative transfer in the 
broken clouds.42 This section describes an approach, 
suggested jointly by the author and A.N. Rublev and 
A.L. Marshak, which compares mean fluxes, calculated 
by the method of closed equations, with results of 
simulation in Gaussian and fractionally integrated 

cascade models.43,44 Since two last models have been 
successfully validated through comparison with 

experimental data, we consider reasonable to use 
them for indirect validation of the Poisson model of 
broken clouds. 

 

3.1. Fractionally integrated  
cascade cloud model 

 

This model is designed for the simulation of the 
liquid water path LWP (or optical depth τ) 

distribution within the overcast marine stratocumulus 
clouds. The fractionally integrated cascade model was 
compared earlier both with additive fractal models 

(such as the model of generalized Brownian motion) 
and multiplicative fractal models (such as the model 
of bounded cascades45), which are used for simulation 
of horizontally inhomogeneous stratocumulus clouds, 
observed from satellites with high spatial resolution 

(of the type of LANDSAT). The results of the 
comparison have shown that in the framework of the 
simplest fractal models, which, in addition to the mean 
and standard deviation, also preserve the correlation 
properties of the simulated cloud field, the fractionally 

integrated cascade model most adequately describes 
fluctuations of the cloud optical depth. 

Since at present there is no well-grounded theory 
of passage from τ(õ, ó) distribution in the overcast 
layer to the broken clouds τbc(õ, ó), to construct the 
“holes” in the cloud layer, we used the approach46: 
 

 τbc(õ, ó) = bmax[τ(õ, ó) – a, 0]. (15) 

The choice of the “cutting” level a = cosnt > 0 
is determined by one more input parameter of the 
cascade model, namely, the cloud fraction N. Restriction 
of the optical depth at the level a > τmin has a 
consequence that the amount of liquid water in the 
layer decreases; to avoid this, the multiplication factor 

b = cosnt > 0 is introduced. 
It was assumed that the cloud fields have 

dimensions 51.2 × 51.2 km, the number of pixels Npix = 29
 

(which corresponds to pixel sizes of 0.1 × 0.1 km),  
the cloud geometrical thickness H is fixed, and the 

extinction coefficient is constant over the vertical 
σ(z) = σ. When constructing the realizations of the 

cascade model, the input parameters β and p were 

chosen within the range typical for marine 

stratocumulus clouds; here we present results, obtained 
at β = 5/3 and p = 0.35. All presented calculations 
are performed using the scattering phase function for 
C1 cloud (λ = 0.69 μm).32 

We restrict our consideration to monochromatic 
radiation, because the passage to the frequency 
integrated radiative characteristics leads to increase 
of uncertainties, caused by the imprecision of 
parameterizations of cloud microphysical characteristics, 
inadequate atmospheric gas model and spectroscopic 
information, etc. The efficiency of calculations of the 
radiative characteristics, averaged over a set of 
realizations of the cascade model, was ensured through 
the use of the randomization procedure.47 

The input parameters of Poisson and cascade 
cloud models were fitted based on two principal 
reasons. First, in order to account for the cloud optical 
depth variations within one cloud element during 
passage from one cloud realization to another, we 
suggested to average the results of the calculations in 
the Poisson (“pois”) model with the use of a certain 
distribution density of the cloud optical depth f(τ): 
 

 pois( , , )RC Nγ ξ�

∞

= τ γ ξ τ τ∫ � pois

0

( , , , ) ( )d ,RC N f  

 , , .s dRC F F F
↑ ↓ ↓

=  

Here, the symbol 〉RC〈pois means that upward and 
downward (unscattered F↓

d
 and diffuse F↓

s
) radiative 

fluxes are averaged over a set of the cloud realizations 

〈RC〉pois with a constant τ, as well as over a set of 
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possible values of the optical depth. The averaging 
procedure was performed by Zhuravleva and Marshak43

 

with the use of the distribution density f(τ), which is 
modeled in the framework of the cascade model and 
satisfactorily agrees with gamma distribution, being  
a good approximation of the cloud optical depth 
distribution according to the data of satellite 

observations48: 
 

 
1( , , ) ( ) exp( ) ( ),f ν ν−

Γ τ ν λ = λ τ −λτ Γ ν
 

,λ = ν τ
 

 ( )
2
,

τ
ν = τ σ  2 2

.

τ
σ = ν λ

 

Second, the cloud aspect ratio γ was chosen in 
such a way as to match the unscattered radiation in 
the Poisson and cascade (“cas”) models: 

 pois( , , )dF N
↓
γ ξ�

cas

( , ) .dF N
↓= ξ�  

Note that the interrelation between F↓
d and γ can 

be reliably determined at solar zenith angles ξ� ≤ 75° 

and the cloud amount N < 0.7. The effective value 
of γ, determined by the above-indicated method, may 
differ from its physical value γ = H/D. The question 
is raised as to how at such approach to the choice of 
the cloud aspect ratio the fluxes of diffuse radiation 
match each other in the cascade and Poisson models? 
The results of numerical simulation show43 that the 
suggested approach: 

1) ensures the coincidence of mean fluxes of 
diffuse radiation to within the relative error δpoisF = 
= 100%(Fpois – Fcas)/Fcas ≤ 3% in a wide range of 
parameters of Poisson model and fractionally integrated 
cascade one. These discrepancies somewhat increase 
when the values of mean fluxes decrease (in particular, 
as τ

–
 increases, δpois(F

↓
s) grows by 10–20% as a function 

of cloud single scattering albedo Λcl (Fig. 2)); 
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Fig. 2. Relative differences in the radiative fluxes, calculated 

in the cascade and Poisson cloud models: N = 0.51, τ
–
 = 13, 

στ = 12.1. Solid lines correspond to calculations at Λcl = 1 
and dash lines at Λcl = 0.95. 

 

2) makes it possible to use the same aspect ratio 
γ both in the case of conservative scattering and in 
the presence of moderate absorption (Λcl ≥ 0.95). For 
fixed optical characteristics and cloud geometrical 
thickness, there exists a range (γmin, γmax) within which 

the mean flux calculation errors at all 0 ≤ ξ� ≤ 75° do 

not exceed 5–10% in most cases. 
 

3.2. Gaussian model 
 
An approach to simulation of fluxes of the 

photosynthetically active radiation (PAR, 0.4–0.7 μm) 
was suggested44 for fast calculations of monthly mean 
PAR fluxes as functions of the geographic latitude, 
month, and surface type. To calculate PAR under 
conditions of the horizontally homogeneous atmosphere, 
we used the method of direct simulation, while under 
broken cloud conditions – the benchmark algorithm 
described in Section 2. The transmission function of 
atmospheric gases was approximated by the exponential 
series; the molecular absorption coefficients were 

calculated on the basis of the spectroscopic HITRAN 
database taking into account the specified profiles of 
the meteorological parameters and atmospheric gas 
concentrations. 

We used this approach when comparing mean 
fluxes of the upward and downward PAR, calculated 
in the Poisson and Gaussian cloud models. According 
to the obtained results,6,39,49

 the Gaussian model 
ensures a satisfactory agreement with the data of the 
ground-based and satellite radiation measurements when 

setting mean horizontal cloud size D(N) and aspect 

ratio γ = (N) determining the cloud top boundary Í
top
cl , 

in accordance with data of Shmeter,50 and with cloud 
extinction coefficient defined as6,49 

 σgaus = 30N. (16) 

Based on the simulation results44 it is found 
that, if the geometrical parameters in the Poisson 
model are set to be equal to those in the Gaussian 
model, and if the cloud extinction coefficient σpois is 
selected as directly proportional to the cloud fraction 
N according to the relation 

 σpois = 12N, (17) 

then the PAR fluxes, calculated by the two models, 
well agree. Figure 3 presents relative differences in 
the upward and downward fluxes, calculated by the 
Gaussian and Poisson models: 

 ΔRC = 100%(RCpois – RCgaus)/RCgaus, 

 , , .sdRC F F F
↑ ↓ ↓

=  

For parameters specified in Fig. 3, the maximal 
discrepancy is observed for the flux of unscattered 
radiation F↓

d and is approximately –30% for large 

solar zenith angles ξ� = 75°, at small F↓
d values. On 

the whole, the average discrepancy between PAR 
calculations by these models does not exceed 5 W/m2 
in most cases in a wide range of cloud amounts and 
solar zenith angles. 

The difference in cloud extinction coefficient 
between Poisson and cascade models is caused by the 
fact that the clouds in the statistically homogeneous 
Poisson model are approximated by rectangular 
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parallelepipeds, while in Gaussian model the cloud 
shape is close to the truncated paraboloid. As a 
consequence, for the same value of σ the volume of 
the cloud matter will be larger in the Poisson model, 
and to compensate this, it is reasonable to reduce the 
value of σpois. The numerical factor in the relation 
σgaus = 2.5σpois [see formulas (16) and (17)] is 
obtained by us via the additional calculations. 
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Fig. 3. Relative discrepancies of the fluxes of upward and 
downward radiation, calculated by the Gaussian and Poisson 

models. The height of the bottom boundary H
bot

cl  = 2 km, 
the surface albedo is taken from Ref. 51 and corresponds to 
the coniferous forest. 

 

The comparison of the measured and calculated 
monthly mean fluxes of downward PAR for BOREAS 
(BOReal Ecosystem-Atmosphere Study) NSA in 
2001–2003 is given in Ref. 44. The comparison shows 
that, on the whole, the F↓

ÐAR(z = 0) calculations are 
in good agreement with the experimental data. 

 

Conclusion 
 

The main results of the work are as follows: 
  1. The model of solar radiative transfer under 
different atmospheric conditions, including the spatially 

inhomogeneous and stochastic clouds has been 

developed. The average (over the cloud realizations) 
fluxes and brightness fields are calculated using an 
efficient method of closed equations, based on the 
analytical averaging of the radiative transfer equation 
in the framework of the statistically homogeneous 
Poisson cloud model. 

In the algorithms of the statistical simulation, 
developed by us, the molecular absorption is accounted 
for either through the photon survival probability or 
using different parameterizations of the atmospheric 
gas transmission function. The computation scheme  
of accounting for the molecular absorption on the 
basis of the k-distribution method allows us to use  
in calculations the newest spectroscopic data, as  
well as the information on the device instrumental 
function, on actual meteorological profiles, and on the 

concentration of the atmospheric gases. To calculate  
a large amount of the average (over the cloud 
realizations) spectral fluxes and brightness fields,  
we developed an approach, combining the method  

of closed equations and method of dependent tests. 
To increase its efficiency in the near-IR range  
(0.7–3.6 μm), we proposed a MDT modification, 
based on the use of the specific features of the 
spectral dependence of the cloud characteristics in 
this spectral interval. 

2. The computation algorithms, contained in the 
model, adequately describe the regularities of the 
transformation of the solar radiation in the clear sky 
and in the presence of the clouds. This is supported by: 
  – results of testing in the framework of the 
International Project Intercomparison of 3D Radiation 
Codes in the vertically and horizontally inhomogeneous 

realizations of the cloud fields, inferred from satellite 
and ground-based measurements; 

– a good agreement of the spectral fluxes, 
calculated with benchmark line-by-line calculations 
and ground-based radiation measurements. 

3. From comparison with the available data of 
the field measurements and results of the simulation 
by the fractionally integrated cascade and Gaussian 
models of the broken clouds, validated earlier against 
the realistic subgrid-scale cloud structures, it follows 
that the statistically homogeneous Poisson cloud 
model and the methods of calculation of statistical 
characteristics of solar radiation can be used for 
description of radiative transfer regularities in the 
actual cloud fields with the random geometry. 
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APPENDIX 

Calculation of the mean intensity  
in the system “aerosol – broken 

clouds – underlying surface” 
 

We present relations for calculation of mean 

fluxes; they are generalizations of formulas for an 
isolated cloud layer, presented in Subsection 1.3, to 
the case “broken clouds – aerosol – underlying 

surface.”23 
It follows from the radiative transfer equation 

linearity that accounting for the effect of the below- 
and above-cloud aerosol atmosphere, as well as the 
underlying surface, consists in the change of the 
boundary conditions for the mean intensity, written 
for isolated clouds. In particular, the radiation 

scattered by the aerosol in the beyond-cloud layers 
and reflected from the underlying surface can be 
considered as a certain diffuse source, which in the 

Monte Carlo calculations can be accounted for as follows. 
  Consider the cloudy – aerosol atmosphere, 
consisting of Nlay layers with the boundaries {Hj, Hj+1}, 
j = 1, …, Nlay. Clouds occupy the layer with the 
number Ncl and with the top Í

top
cl  and bottom Í

bot
cl  

boundaries, respectively: Í
top
cl  = HNcl+1

, Í
bot
cl  = HNcl

 

(see Figure). Each jth aerosol layer is defined by the 
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extinction coefficient σa, j, single scattering albedo 
Λa, j, and scattering phase function ga, j(μ). Denote 

through 
( ) ( – )j
n n n j n nH z c= +r r ω  the point of crossing 

of the level Hj and the ray originating from the 

collision point rn in the direction ωn. In the vertically 
inhomogeneous aerosol atmosphere with piecewise 

constant extinction coefficient, the transmission 

function is defined by the formula 

 ( ) ( )( ) ( )
, exp – , ,

j j
n n n nT ⎡ ⎤= τ

⎣ ⎦
x r x r  

where the optical pathlength ( )( , )j
n nτ r r  between the 

points rn and ( )j
nr  in the direction ωn is calculated by 

elementary formulas. 
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Fig. Schematic view of photon trajectory, demonstrating the 
contribution of the cloud layer and above – and below – 
cloud aerosol atmosphere to the values of the atmospheric 
radiative characteristics. 

 

Write the function h(xn) [see formula (10)] in 
the form, depending on the layer (number it with 
“i”), in which a collision occurred. For simplicity, 
we consider that the mean fluxes should be calculated 

at the levels, coinciding with the boundaries of the 
atmospheric model: z* = {H1, H2, …, HNlay + 1}. 

 

Scattering in the aerosol layer  
above the cloud layer 

 

Upward flux. The function h(xn) is determined 
by extinction only in the aerosol layers (point 

x1 = (r1, ω1) in Figure): 

 ( )( )( ) , ,j
n n nh T=x x r  1 1.layi j N+ ≤ ≤ +  (A1) 

Downward flux. The function h(xn) depends on 

the position of the level Hj (point x2 = (r2, ω2) in Figure). 

  The level Hj is within the above-cloud atmosphere 
(in particular, it may coincide with the cloud top 
boundary): 

 ( )( )( ) , ,j
n n nh T=x x r  1 .clN j i+ ≤ ≤  (A2) 

The level Hj belongs to the cloud layer (in a given 

case, it coincides with the cloud bottom boundary). In 
this case, the contribution to the downward flux is 
the extinction within the cloud layer plus the aerosol 
extinction of radiation, having reached the cloud top 
boundary without scattering: 

 ( ) { }+

=

= η∑cl

2
( 1) top bot

clcl
1

( ) , exp – – ,N

n n n i i n

i

h T D H H cx x r  

 = cl.j N  (A3) 

The level Hj belongs to the below-cloud atmosphere: 
 

 ( ) { }+

=

= η ×∑cl

2
( 1) top bot

clcl
1

( ) , exp – –N

n n n i i n

i

h T D H H cx x r  

 ( )×
cl( ) ( )
, ,

N j
n nT r r  ≤ < cl1 .j N  (A4) 

 

Scattering in the cloud layer 
 
Upward flux. The function h(xn) depends on the 

position of the level Hj (point x3 = (r3, ω3) in Figure). 
  Level Hj is within the cloud layer (in a given 
case, it coincides with the cloud top boundary): 

{ }
=

= η∑
2

t
cl

1

( ) exp – – ,n i i n n

i

h D H z cx  = +cl 1.j N  (A5) 

The level Hj belongs to the above-cloud aerosol 
atmosphere: 

 { } ( )+

=

= η∑ cl

2
top ( 1) ( )
cl

1

( ) exp – – , ,N j
n i i n n n n

i

h D H z c Tx r r  

 + < ≤ +cl lay1 1.N j N  (A6) 

Downward flux. The function h(xn) depends on 

the position of the level Hj (point x4 = (r4, ω4) in 
Figure). 

The level Hj is within the cloud layer (in this 
case, it coincides with the cloud top boundary): 

  { }
=

= η∑
2

bot

cl

1

( ) exp – – ,n i i n n

i

h D H z cx  = cl.j N  (A7) 

The level Hj belongs to the below-cloud aerosol 
atmosphere: 

 { } ( )
=

= η∑ cl

2
top ( ) ( )
cl

1

( ) exp – – , ,N j
n i i n n n n

i

h D H z c Tx r r  

 ≤ < cl1 .j N  (A8) 
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Scattering in the below – cloud atmosphere 
 
Upward flux. The function h(xn) depends on the 

position of the level Hj (point x5 = (r5, ω5) in Figure). 
  Level Hj is within the below-cloud atmosphere 

(in this case, it may coincide with the cloud bottom 
boundary): 

 ( )( )( ) , ,j
n n nh T=x x r  + ≤ ≤ cl1 .i j N  (A9) 

The level Hj belongs to the cloud layer (it 
coincides with the cloud top boundary): 

 ( ) { }
=

= η∑cl

2
( ) top bot

clcl
1

( ) , exp – – ,N

n n n i i n

i

h T D H H cx x r  

 = +cl 1.j N  (A10) 

The level Hj belongs to the above-cloud atmosphere: 
 

 ( ) { }
=

= η ×∑cl

2
( ) top bot

clcl
1

( ) , exp – –N

n n n i i n

i

h T D H H cx x r  

 ( )×
cl( ) ( )
, ,

N j
n nT r r  + < ≤ +cl lay1 1.N j N  (A11) 

Downward flux. The function h(xn) is determined 
by the extinction only in the aerosol layers (point 

x6 = (r6, ω6) in Figure): 

 ( )( )( ) , ,j
n n nh T=x x r  1 .j i≤ ≤  (A12) 

 

Reflection from the underlying surface 
 
In case of reflection from the underlying surface 

(point x7 = (r7, ω7) in Figure), to calculate h(xn), it is 
necessary to use formulas for the upward fluxes and 
introduce an additional weight As/(2π). 
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