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The theoretical basis for applying the differential method and the correlation analysis for 

measuring the structural constant of refractive index, coherence length, and cross component of wind 
velocity is presented. A wavefront sensor is considered as the measuring instrument. The theoretical 
results are confirmed by numerical experiments. 

 
Propagation of optical radiation in the 

atmosphere is accompanied with fluctuations of its 
parameters (intensity, phase, angle of arrival, etc.). 
Ray path changes caused by atmospheric turbulence 
result in phase fluctuations along and across the 
beam. Phase fluctuation along the beam decreases 
time coherence, while the fluctuations across the 
beam disturb the spatial wavefront coherence, 
distorting and curving the beam and causing image 
“jitter.” Phase fluctuations result in fluctuations of 
angle of arrival. Estimation of the latter fluctuations 
on the base of the cross correlation analysis allows 
one to determine characteristic parameters of the 
atmospheric turbulence, while the use of differential 
method – to minimize the measurement errors caused 
by proper oscillations of the measuring system.  

The idea of using measurements of the angle of 
stellar light arrival in order to determine turbulence 
parameters was proposed in the middle of the last 
century.1 Numerical relations between angles of arrival 
and turbulence parameters were defined by Fried.2 
Differential measurements of stellar light movement 
were realized in the Differential Image Motion 
Monitor,3 which calculates turbulence parameters 
from the dispersion of random shifts of image energy 
centers. In general, the differential monitor is an 
effective and available tool, capable of measuring 
several turbulence parameters; at present, it is used 
at such observatories as Cerro Paranal or Mauna-Kea. 
At the same time, it cannot provide for total 
information on detailed turbulence structure.  

The ideology of Grating Scale Monitor (GSM)4 
is based on the analysis of spatial covariation of  
arrivel angle fluctuations within the Karman model. 
The monitor uses the principle similar to the Shack–
Hartmann sensor, i.e., it measures fluctuations of the 
arrival angle, detectable simultaneously at several 
wavefront points, and can provide for almost 
complete set of wavefront parameters, important for 
methods with high angular resolution. To measure 
wavefront velocity, GSM considers the temporal 
cross correlation of the arrival angles between two 
telescopes spaced by a  fix distance. Application of 

the differential method in GSM allows to eliminate 
the influence of noise sources on visibility detection.5   

The essence of the differential method, used as 
the basis of the differential turbulence meter,6 
consists in calculating turbulence parameters from 
the measured difference dispersion of angular shifts 
α1 and α2 of energy centers of images from two D-
diameter subapertures, located in the entrance pupil 
plane at the distance d, ignoring the anisotropy 
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within the Kolmogorov turbulence model, L is the 
path length; [l0, L0] is the inertial interval of spatial 
scale inhomogeneities. 

The differential method for minimizing the 
calculation error caused by proper oscillations of the 
measuring system allows structural turbulence 
characteristics to be determined.  

(4)
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The characteristic turbulence parameters can be 
determined with a wavefront sensor as well. Figure 1 
shows the schematic of a wavefront sensor (WFS) of 
the Shack–Hartmann type. The lens raster divides 
the arriving wavefront to local areas, which are 
focused on the receiver, where then images are 
formed (hartmanograms).    

 

 

Fig. 1. Shack–Hartman WFS schematic: wavefront (1), 
lens raster (2), receiver (3), and hartmanogram (4).     

The principle of operation of the Shack–
Hartman WFS uses the  measuring of local wave tilts 
with the coordinates  
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expressed in radians via the receiver image scale; Ii,j 
is the light intensity on receiver pixels; i and j are 
the pixel numbers in the focal area under 
measurement. Local wave tilts are proportional to 
ECSs of a focal spot with coordinates (xk, yk) 
relative to the spot obtained for a plane wavefront 
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where f is the microlens focus.  
Transmission of optical radiation through a 

single microlens BC with diameter D is shown in 
Fig. 2.  

 

 

Fig. 2. Schematic of optical beam refraction by a single 
microlens. 

The straight line DE corresponds to the receiver 
plane, and AB – to the plane of arriving wavefront. 
The segment DE is equal to the focal spot shift 

0
x x−  and proportional to the angle of arrival α. 
The angle of wavefront tilt relative to the microlens 
plane ABC∠  is equal to α and proportional to the 
segment AC, corresponding to the phase difference 
ϕ(A) – ϕ(B). 

Thus, tan α = (x0 – x)/f can be determined from 
the shift of calculated coordinates of the focal spot 
(as at small α tan α ≈ α, then α = (x0

 – x)/f), as well 
as the tilt angle and the phase difference 
Δϕ = [D(x0

 – x)/f] (taking into account that 
sin α ≈ α for small α). 

On the one hand, the dispersion of the angle of 
arrival can be calculated as  
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where M is the number of measurements of the angle 

of arrival in the focal spot; 
m

α = α  is the path-

averaged angle of arrival. 
In the coordinate system x, y, the angle of 

arrival depends on the distance 
0 2 0 2( ) ( )d x x y y= − + −  and has the form α = d/f; 

therefore, its dispersion can be expressed via the 
dispersion of ECS of the focal spot: 
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where 0 2 0 2( ) ( )
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d x x y y= − + −  is the ECS of 

the focal spot; 
m

d d=  is the  path-averaged ECS of 

the same focal spot.  
On the other hand, the dispersion of angle of 

arrival within the Kolmogorov turbulence model7 has 
the form 
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As in a differential turbulence meter, the 
differential method and cross correlation signal 
analysis6 are applicable for the wavefront sensor 
when calculating turbulence parameters from the 
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measured shift-difference dispersion of the focal spot 
energy centers of the hartmanogram, resulting from 
optical radiation transmission though  the lens raster. 
 The shift-difference dispersion of energy centers 
is calculated for pairs of focal spots, corresponding to 
a pair of microlens of D in diameter with the 
distance d

mc between their centers and distance d 
between neighboring microlenses. The relation 
between the microlenses’ centers  
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and the distance between centers of corresponding 
focal areas  
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depends on the camera resolution: h = Dz/D, where 
Dz is the size of focal area in the hartmanogram.  

The path-averaged structural constant is 
calculated, according to Eq. (2), from the measured 
shift-difference dispersion of the energy centers of a 
pair of focal spots with the distance df between their 
centers as 
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between the centers of chosen microlenses; 
A
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difference dispersion of the energy centers of focal 
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, respectively: 

i = 1, 2, …, N; j = 1, 2, …, N; k = 1, 2, …, N – 1; 
l = 1, 2, …, N – 1. 

When measuring the shift-difference dispersion 
of the energy centers of a pair of neighboring focal 
spots at dmc = d  = D, then qmc = D–1/3(A

α
 – F) = D, 

or qmc = D–1/3(A
α

 – F 2 ). In this case, the difference 

method reduces to Eq. (9) and 2

n
C  is calculated by 

the dispersion of the ECSs of one focal spot. 

The application  of cross correlation analysis to 
the work of a wavefront sensor allows calculating the 
average cross component of the wind velocity. As is 
known,8 according to “frozeness” hypothesis, the 
turbulence “swims” under the action of the cross 
component of wind velocity in a plane, parallel to 
the lens raster plane, and, hence, hartmanogram 
plane (see Fig. 1). 

Figure 3 shows a virtual coincidence of the 
turbulence movement plane under the action of wind 
velocity cross component with the hartmanogram 
plane. 

 

 

Fig. 3. Hartmanogram fragment: Vx, Vy are the wind 
velocity projections. 

The x- and y-components of cross wind velocity, 
in terms of which energy center shifts (ECS) of  the 
focal spot are defined, evidently form the angle 
θ = arctan(Vy/Vx). In general, the velocity varies 
linearly:  V = kΔρ/Δt, k = Vy/Vx. In this case, the 
correlation time is Δt = t1 – tm, where t1 and tm are 
the time points provided the coordinates of energy 

centers of focal spots are equal, i.e., 1( ) ( )mk kx t x t=  

and 1( ) ( )mk ky t y t= , since the turbulence movement 

within  the Kolmogorov model  is a periodic process.9 
 According to Eqs. (1) and (7), the shift-
difference dispersion of energy centers of a pair of 
focal spots has the form 
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distance between the centers of chosen microlenses 
essentially exceeds the microlens’ diameters. The 
parameters i, j, k, and l can be chosen so that dmc 
corresponds to maximally distant microlenses, i.e., 
mounted at the raster edges.  
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At the same time, the use of correlation analysis 
in calculation of turbulence parameters by the shift-
difference dispersion of energy centers of a pair of 
focal spots is possible only under the condition that 
fluctuations of focal spot ECSs are non-correlated. 
For this, the distance dmc between the centers of 
chosen lenses should be larger than the outer scale of 
turbulence L0. 

If dmc ≠ d or, in other words, for 
1/3 1/3,mcA D Fd− −

α
−  where dmc = (Nlens – 1)D, Nlens is the 

lens raster size for > > λ0 ,L D L  taking into 

account df/dmc = h, the distance df between the 
centers of corresponding focal areas can be expressed 
from Eq. (12) as follows: 
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It follows from Fig. 3, that  
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Equating the right parts of Eqs. (14) and (15), 
obtain the equation for the cross component of wind 
velocity 
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where Ad = 0.391F–1/3; A = 0.29. 

In Eq. (17), the difference 1/3 1/3
mc

A D Fd
− −

α
−  is 

absent in an explicit form and the velocity depends 

on the ratio 2 2/ .nd Cσ  This difference is included in 

the equation for structural constant 2

n
C , and, hence 

the differential method is used in calculation of the  
wind velocity cross component.  

This component is projected on the coordinate 
axes (see Fig. 3). The projections form an angle, 
which varies with time. In Eq. (17), wind direction 
variations are characterized by the cosθ. 

Let the point A (see Fig. 3) has coordinates 
(i, j), point C – (i + k, j), and point B – 
(i + k, j + l); dfx is the distance between points A 
and C, dfy is the distance BC. Then tanθ = Vy/Vx at 
every moment of time is determined by the ratio 
dfy/dfx, which (according Eq. (13) depends on  
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The dependence of the angle between the 
velocity projections on the shift-difference dispersion 
of the energy centers of pairs of focal spots is shown 
in Fig. 4. 

 

Fig. 4. Hartmanogram fragment: Vx = AC, Vy = BC and 

,xV AC′ ′ ′=  yV BC′ ′ ′=  are the velocity projections at the time 

moments t1 and t2. 

At the initial moment t1, 
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corresponds to dfy (distance BC). At the next 
moment t2, 
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where the velocity projections are proportional to the 
shift-difference dispersion of the energy centers of 
pairs of focal spots, which can be analytically 
expressed as 
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are focal spot coordinates at the time 1t ;  
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are focal spot coordinates at the time t2; 
i = 1, 2, …, N; j = 1, 2, …, N; k = 1, 2, …, N – 1; 
l = 1, 2, …, N – 1.  
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The path-averaged wind velocity is determined 
by the shift-difference dispersion of the energy 

centers of pairs of focal spots 2

dxσ  and 2

dyσ  centered 

at the points À, Â, and Ñ, respectively. 
The use of a CCD-camera as a receiver allows 

measuring the dispersion of angle of arrival, which is 
usually 1–10″. The focal spot diameter Df depends 
on the CCD-camera resolution, microlens diameter, 
and focus. If the camera resolution is 
512 × 512 pixels, then the focal area is 64 × 64 pixels 
for the lens raster of 24 mm in size, consisting of 
64 microlenses (8 × 8). The pixel size corresponds to 
10 × 10 μm. Thus, the focal area in this case is 
640 × 640 μm and corresponds to a microlens of 
3000 × 3000 μm in size. Random shifts of a focal spot 
should not exceed 1/3 of the radius of diffraction 
pattern to avoid the focal spot expansion beyond its 
zone. The focal spot radius corresponds to the radius 
of the third dark fringe in the Airy diffraction 
pattern Df = 1.619λ/D. The maximum allowable 
angular ECS of the focal spot is 8.5 ⋅ 10–5 rad for a 
microlens with a diameter of 3 mm. The dispersion of 
angular shifts should not exceed 7.2 ⋅ 10–10 rad. If α is 
the maximum allowable angular ECS of the focal 
spot, then the focal distance f = Df/2α = 
= 1.619λ/2αD answers it. In our case, f ≈ 2 m for 
λ = 0.63 μm, hence, α = 1.7 ⋅ 10–11 m. 

To estimate the efficiency of turbulence 
parameter measurements with a wavefront sensor,  
 
 
 

a numerical model has been built, which includes the 
dynamic turbulence model with the Karman 
inhomodeneities,8,9 lens raster, and Shack–Hartmann 
sensor model. The value of abscissa shift of focal spot 
energy center was obtained from numerical 
experiments; it equals to 1.51765 ⋅ 10–11 m at the 
microlenses diameter D = 3 mm, distance between 
their centers d = 21 mm, path length L = 300 m, and 
outer scale L0 = 10 mm. In case of cross correlation, 
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In numerical experiments, h = 12. For the 
period Δt = 100 s, D = 3 mm, L = 300 m, f ≈ 2 m, 
and θ = 45°, the path-averaged cross component of 
the wind velocity 
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This value answers a wind velocity value of 1.0 m/s 
in the numerical dynamic turbulence model, which is 
used in the “frozen” turbulence  movement modeling. 
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