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Dispersion equations are derived in analytical form for ordinary and extraordinary waves in 
an elliptic ferrite-filled waveguide at longitudinal magnetization. The obtained expressions allow one 
to determine the critical wavelength, plot the dependences of the propagation constant on the 
geometrical parameters of ferrite-filled waveguide, and define a single-mode operation of elliptic 
waveguides of the microwave and optical ranges. Limiting transition to isotropic filling is shown.  

 

Plane and corrugated elliptic waveguides are 
widely used in modern microwave devices owing to 
their well-known properties (see, e.g., Refs. 1 and 2). 
At present, the properties of anisotropic optical 
waveguides are of interest, as well as devices on their 
basis for processing and transfer data.3 Optical 
waveguides, as having imperfectly round cross-
section, can be related to elliptic ones. 

A key operation parameter of any waveguide is 
the critical frequency (critical wavelength), at which 
electromagnetic waves (EMW) stop to propagate. 
The value of critical frequency depends on a mode, 
waveguide geometrical sizes, and parameters of the 
filling medium. 

This work is devoted to derivation of the 
dispersion equation for ordinary and extraordinary 
waves in a regular elliptic ferrite-filled waveguide at 
longitudinal magnetization. In the analysis, the losses 
in waveguide wall and ferrite are taken negligible. 

The shape of waveguide cross-section determines 
the choice of coordinate system (Fig. 1).  

 

 
 

Fig. 1. Coordinate system of elliptic cylinder: e is the focal 
length, s is the semimajor axis; f is the semiminor axis;  

1 ,1ξ ϕ  are the orts. 

The ferrite permeability tensor at longitudinal 
magnetization has the form4 
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where μ and k are the tensor components, which are 
functions of frequency ω, magnetization M0, and 
impressed magnetic field H0; μ||  is independent of 
magnetic field strength. 

Decomposing5 the Maxwell equation to 

longitudinal and transversal parts relative to rotE  

and rotH , two wave equations for ÅÍ and ÍÅ wave 
are obtained in the form 
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where ξ and φ are the transverse and z is the 
longitudinal coordinate curves of the elliptic 
coordinate system (see Fig. 1);  
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jγ = β + α  is the propagation constant; β is the phase 

coefficient; α is the attenuation coefficient; ω is the 
frequency; e is the focal length; Å

z and Íz are the 
longitudinal components of electric and magnetic 
fields, respectively. 

Applying the variable separation method to the 
first equation of system (2), obtain ordinary (relative 
to Åφ) and modified (relative to Åξ) canonical 
Mathieu equations with real b and q: 
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where b is the separation constant; 
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root of the modified Mathieu equation of integer 
order. 

Using the technique for deriving the dispersion 
equation for isotropic waveguide4 in the case of 
gyrotropic one, from Eqs. (2) and (4) obtain 
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From Eqs. (4) and (5) derive the equation for the 
constant of EH-wave propagation at longitudinal 
magnetization: 
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In particular, for isotropic case (k = 0): 
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 is the transversal wave 

number. 
The phase coefficient β is connected with the 

transversal wave number 2
K  by the equation4 

  β = εμ −2 2 2
,w K   (8) 

where 

2 2

0w Kεμ =  is the propagation constant in 

unrestricted space. 
The wave exists in a waveguide if β is the real 

number, i.e. 
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It follows from the first equation of system (7) 

that the transversal wave number =2
0,K  hence, 

EMW does not propagate in the waveguide at 

1 wγ = εμ . Substituting the above-obtained 

equations for ξ ϕ
2 2 2 2
, , ,K K K d  in the second equation of 

system (7) and taking into account Eq. (8), obtain 
the following dispersion equation (without 
attenuation): 
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Define the critical wavelength from Eq. (10) (at 
β = 0):  
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where s is the semimajor axis; l  is the eccentricity. 
Note, that Eq. (11) completely coincides with 

the well-known equation1 for elliptic isotropic air-
filled waveguide.  

Apply the variable separation method both for 
extraordinary ÍÅ and ordinary ÅÍ waves. Again, 
obtain the ordinary and modified Mathieu equations 
from the first equation of system (3): 
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As in the previous case, obtain the HE-wave 
propagation constant at longitudinal magnetization 
from Eqs. (3) and (12) using the variable separation 
method: 
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In particular, for isotropic case (k = 0, μ = μ||)  
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which coincides with Eq. (7) and, hence, Eq. (11). 
 It follows from Eqs. (6) and (13) that the phase 
velocities of ÅÍ and ÍÅ waves differ and depend on 
the external magnetic field strength, ferrite 
magnetization, and frequency, as the components of 
the ferrite permeability tensor depend on these 
parameters. The critical wavelength and dependence 
of the propagation constant γ on the waveguide 
geometric parameters are defined from these 
equations, as well as single-mode operation of elliptic 
waveguides of the microwave and optical ranges. It is 

also important that the obtained equations are true 
for isotropic case as well. 
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