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The problem of second harmonic generation in a quadratically nonlinear uniaxial crystal is 

considered. It is shown how a set of differential nonlinear wave equations for scalar fields at the 
frequencies ω and 2ω can be derived rigorously from the Maxwell equations neglecting the effects of 
depolarization of interacting waves. The transition to an equivalent set of integral equations is 
considered in detail. It is shown that for beams with a narrow spatial spectrum the equations derived 
convert into the well-known contracted equations for slowly varying complex amplitudes of 
interacting waves. The derivation of a recurrence equation is demonstrated. This equation is proposed 
to be considered as an approximated (with a known accuracy) analytical solution of the scalar 
nonlinear problem. At the increased number of steps, it transforms into a well-known algorithm of 
asymptotically exact numerical solution. 

 

Introduction 

In this paper, we consider nonmagnetic (μ = 1) 
and nonconducting (σ = 0) media without free 
charges (ρ = 0). The Maxwell equations 
corresponding to this situation can be written as  

 
1 1

rot , rot .
c t c t

∂ ∂
= − =

∂ ∂

H D
E H   (1) 

We restrict our consideration to the case of 
quadratically nonlinear homogeneous uniaxial 
dielectrics, and the constitutive law for D can be 
represented as  

 4 4 ,= ε + π = ε + πχD E P E EE� � �   (2) 

where ε�  is the permittivity tensor (of rank 2); χ�  is 
the tensor of quadratic nonlinear susceptibility (of 
rank 3). 

The solution of Eq. (1) will be sought in the 
form of a sum of two monochromatic waves at the 
frequencies ω and 2ω, that is,  

 ( ) { }2

1 2

1
, ( )e ( ) e c.ñ. .

2
i t i t

t
− ω − ω

= + +E r E r E r   (3) 

The presence of only two waves in the medium means 
that we deal with the scalar interaction. Assume that 
the primary radiation E1 is an ordinary wave, while 
E2 is an extraordinary wave. In other words, we 
consider the îîå-interaction. 

Excluding H from Eq. (1) and substituting it 
into derived equation (3), we obtain the system of 
statistical nonlinear wave equations  

 2

1 1 1rot rot ( ) ,k C− ε ω =E E P�  (4.1) 

 2

2 2 2rot rot (2 ) (2 ) 2 ,k C− ε ω =E E P�    (4.2) 

where 

  k = ω/c; C = 4πk2; 

*

1 1 2( ) ,= χ ωP E E�
 2 1 1(2 ) ;= χ ωP E E�

  

the frequency dependence of the tensors ε�  and χ�  
results from the time dispersion taken into account.1–3 
 A very important consequence follows directly 
from Eqs. (4). Any exact solution of the system of 
equations (4) should satisfy the condition for 
divergence  

 1 1div ( ) 4 div ,ε ω = − πE P�   (5.1) 

 2 2div (2 ) 2 div .ε ω = − πE P�   (5.2) 

The essence of the scalar approximation of 
interest consists in the fact that the solution of 
Eqs. (4) is sought in the form  

 1 1 1( ) ( ),U=E r e r   (6.1) 

 2 2 2( ) ( ),U=E r e r   (6.2) 

where 1e  and 2e  are the constant unit vectors 
defined a priori. Correspondingly, the aim of this 
study is to show maximally rigorously, whenever 
possible, the form of the equations (differential and 
integral) for the scalar fields U1 and U2 from 
Eqs. (6).  

Despite the fact that the overwhelming majority 
of problems of the theory of harmonics generation 
was considered just in the scalar approximation, a 
somewhat detailed discussion of the problem 
formulated above is unknown. Owing to the above-
said and taking into account that these problems 
have a great methodological significance, the urgency 
of this study seems to be quite obvious. The 
transition to the scalar approximation for fields in 
linear uniaxial media was considered earlier.4 Here it 
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is proposed to use nearly the same approach, only 
slightly modified, taking into account that conditions 
for divergence become inhomogeneous. In addition, 
this paper considers in detail the possibility of 
replacing the differential equations by an equivalent 
system of integral equations. This procedure is, 
essentially, quite easy, but has a great significance, 
because, as will be shown in Section 6, it forms a 
basis for obtaining an analytical solution of the scalar 
problem of interest. 

Before discussing the subject of this paper, we 
would like to note a principal circumstance. The 
necessary scalar equations for U1 and U2 cannot be 
obtained through the simple substitution of Eqs. (6) 
into Eqs. (4), as was done in Ref. 1 for the case of 
plane waves. This can be demonstrated by a simplest 
example. 

Let a medium be isotropic and linear. In this 
case, for the field at the frequency of the first 
harmonic we can find from Eqs. (4)  

 2 2

1 1rot rot 0.k n− =E E   (7) 

Substituting Eq. (6.1) into Eq. (7), after elementary 
transformations we obtain for U1 

 

( )

1 1 1

1 1 1

2 2 2

1 1 1 0,

U U U

x y z

U k n U

⎛ ⎞∂ ∂ ∂⎛ ⎞ ⎛ ⎞
∇ + ∇ + ∇ −⎜ ⎟⎜ ⎟ ⎜ ⎟

∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

− ∇ + =

e i e j e k

e

  

(8)

 

where i, j, k are unit vectors of coordinate axes. 
Let the field E1 be linearly polarized, for 

example, along the axis X, that is,  

 { }1 1, 0, 0 .=e   (9) 

The substitution of Eq. (9) into Eq. (8) yields three 
scalar equations  

 
2 2 2 2

2 21 1 1 1

12 2
0.

U U U U
k n U

x y x z y z

∂ ∂ ∂ ∂
= = + − =

∂ ∂ ∂ ∂ ∂ ∂
  (10) 

It is obvious that the equalities in Eq. (10) can be 
satisfied only if we assume that the function U1(r) is 
independent of x, that is 

 1/ 0.U x∂ ∂ =   (11) 

In other words, the field at the frequency of the first 
harmonic should be a cylindrical beam and, 
consequently, we cannot obtain a scalar equation for 
the three-dimensional amplitude at such an approach. 
It is clear that this result is a direct consequence 
from the condition for divergence (5.1), which takes 
the following form in the particular case under 
consideration: 

 1 1 1

1 1 1 1div 0 0.x y z

U U U
e e e

x y z

∂ ∂ ∂
= = + + =

∂ ∂ ∂
E  (12) 

If we substitute the vector (9) into Eq. (12) now, 
then obtain the condition (11). 

Thus, our statement that we are not interesting 
in the wave polarization, that is, use the 
approximations (6), turns out to be insufficient for 
obtaining the scalar equations for U1 and U2 directly 
from the Maxwell equations in the general case. 
Some intermediate vector equations are required for 
the formally rigorous transition to the scalar 
approximation. The search for such equations at the 
frequencies of the first and second harmonics is the 
particular goal of this paper. 

1. Coordinate systems 

The axis Z of the Cartesian coordinate system is 
directed along the optical axis of a uniaxial crystal. 
The axes X and Y are believed to coincide with the 
crystallographic axes. Since the values of components 
of the tensor χ�  are usually presented just for this 
coordinate system, the system will be referred to as 
χ-coordinates for definiteness. 

The direction of propagation of the laser beam 
(direction along the longitudinal axis of the beam) is 
determined by the vector s. The problem of interest 
is to find the second-harmonic (SH) field formed by 
the laser beam, whose vector s makes an arbitrary 
angle θ with the optical axis of the crystal and an 
arbitrary angle ϕ with other crystallographic axis, for 
example, X in the general case. It is convenient to 
solve this problem in a different coordinate system, 
which will be referred to as ε-coordinates. The axis X 
of the latter is directed along the optical axis, while 
the axes Y and Z are oriented so that the vector s 
lies in the plane XZ. For nonzero components of the 
permittivity tensor in the ε-coordinates, we have  

 2 2

11 22 33 ,
e o

n nε = ≠ ε = ε =  (13) 

where n
o
 and n

e
 are the main refractive indices of the 

uniaxial crystal. 
The relation between the χ- and ε-coordinates 

has the following form: 

 sin cos .

cos sin

x z

y x y

z x y

ε χ

ε χ χ

ε χ χ

= ⎫
⎪

= ϕ − ϕ ⎬
⎪= ϕ + ϕ ⎭

 (14) 

Finally, consider the system of Å-coordinates, in 
which the axis Z is directed along the vector s, while 
two other axes are oriented so that the optical axis 
(o) lies in the plane XZ. In this case, we obtain that  

 { }sin ,0,cos .= θ θo   (15) 

The relation between the ε- and Å-coordinates is 
described by the equations  

 

sin cos

,

cos sin

E E

E

E E

x x z

y y

z x z

ε

ε

ε

= θ + θ ⎫
⎪

= ⎬
⎪

= − θ + θ ⎭

  (16) 
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and the χ- and E-coordinates are related as follows: 

 

cos cos cos sin sin

sin cos .

sin cos sin sin cos

E

E

E

x x y z

y x y

z x y z

χ χ χ

χ χ

χ χ χ

= − θ ϕ − θ ϕ + θ ⎫
⎪

= ϕ − ϕ ⎬
⎪

= θ ϕ + θ ϕ + θ ⎭

   (17) 

Upon the change of the coordinate systems, the 
components of the tensors ε�  and χ�  should be 
transformed: 

 
,

;
j n

jn

x x

x x
αγ

α γ
α γ

′∂ ′∂
′ε ε

∂ ∂
=∑   (18.1) 

 
, ,

.

ji k
ijk

xx x

x x x
αβγ

α β γα β γ

′∂′ ′∂ ∂
′χ χ

∂ ∂ ∂
=∑   (18.2) 

In particular, using Eqs. (13), (16), and (18.1),  
for components of the ε�  tensor in the Å-coordinates 
we find  

2 2 2 2 2 2 2 2 2 2 2

11 22 33( ), , ( ),
o o o o o

n b n c s n n a n s cε = = + β ε = ε = = +β   

2 2 2

13 31 12 21 32 23( 1) , 0,
o o

n cs n aε = ε = β − = ρ ε = ε = ε = ε =  (19) 

where sin( ); cos( );s c≡ θ ≡ θ  

2/ ; ( 1)/
e o

n n cs aβ= ρ = β −  

is the birefringence angle. It should be also noted 

that ( ) /
e

e
n n aθ =  is the refractive index in the 

direction of the first harmonic, that is, at the angle θ 
to the optical axis. 

2. Scalar approximation  
for the ordinary wave at the first 

harmonic frequency  

Let us write Eq. (4.1) in the E-coordinate 
system. The index E is omitted for simplicity. By 
definition,4 the î-wave should not have a projection 
of the vector E on the optical axis. In the E-
coordinate system (see Eq. (15)), this is equivalent to 
fulfillment of the condition  

 0,
x z

sE cE+ =   (20) 

where s = sin(θ); c = cos(θ). 
Using Eqs. (19) and (20), we find  

 

( ) ( )

( )

( )

1 11 1 13 1 22 1 13 1 33 1

2 2 2 2 2

1 1

2 2 2 2 2
.1 1

1

1

x z y x z

o x y

z o

E E E E E

s
n E c s cs E

c

c
E cs s c n

s

ε = ε + ε + ε ε ε

⎧ ⎡ ⎤+ β − β − + +⎨ ⎢ ⎥⎣ ⎦⎩

⎫⎡ ⎤+ − β − + + β =⎬⎢ ⎥⎣ ⎦⎭

+ + =

=

E i j

i j

k E

k�

  

This means that for the î-wave the conditions 
for divergence (5.1) can be written in the form  

 1 12

4
div div .

o
n

π

= −E P   (22) 

Substituting Eq. (22) in Eq. (4.1), we obtain that 
any exact solution of Eq. (4.1) should also be a 
solution of the equation  

 2 2

1 1 1 1 12

4
grad div ,

o

k C
n

π
∇ + = − −E E P P  (23) 

where 1 ( ).
o

k kn= ω  

It is important to note that the inverse 
proposition is not valid in the general case. The exact 
solution of Eq. (23) does not need to be 
simultaneously the exact solution of Eq. (4.1), and 
this manifests itself in the failure of equality (22). 
The conclusion formulated is, quite obviously, the 
direct consequence of the fact that condition (22) 
was assumed to hold a priori when deriving 
Eq. (23). 

For the vector function E1(r) to be the exact 
solution of the Maxwell equations [or wave equation 
(4.1)], it is necessary and sufficient for E1 to be the 
exact solution of Eq. (23) and to exactly meet 
condition (22). Actually, in the most general case, E1 
can be presented in the form  

 1 1 1( ) ( ) ( ),U=E r e r r  (24) 

where  

 1 1 1( ) ( )/ ( ), , , .j je E U j x y z= =r r r   

In this case, equations (22) and (23) make four scalar 
equations sufficient for unambiguous determination of 
four unknown scalar functions U1(r) and e1j(r). 

Assume that determination of the exact form of 
the functions e1j(r) is a secondary problem. Thus, in 
place of the exact solution of Eq. (24), we will 
search for an approximate solution of the form (6.1), 
that is, restrict ourselves by determination of only 
one scalar function U1(r). With this formulation of 
the problem (search for the solution in the scalar 
approximation), one equation (23) is already 
insufficient. To make sure, substitute Eq. (6.1) into 
Eq. (23), multiply the both sides of the equation 
scalarly by e1, and obtain the equation for the scalar 
field at the first harmonic (FH) frequency: 

 2 2

1 1 1 1 1 1 12

4
graddiv .

o

U k U C
n

π
∇ + = − −e P e P   (25) 

If all χijk = 0, then equation (25) is transformed into 
the Helmholtz equation, being the basic equation for 
the field in a homogeneous isotropic medium. 

Here we do not discuss how strongly U1 from 
Eq. (25) differs from the function |E1| =  

= 2 2 2

1 1 1 ,x y zE E E+ +  obtained as a solution of 

Eq. (4.1). Taking into account this circumstance, but 
keeping in mind that there is no other principal 
inconsistency in the reasoning presented, we call this 

(21)



744   Atmos. Oceanic Opt.  /September  2007/  Vol. 20,  No. 9 V.O. Troitskii 
 

 

procedure of transition to the scalar approximation 
formally rigorous. 

Let us specify the form of the vectors e1 and e2 
from Eq. (6) taking into account that the field E1 
should be an ordinary wave, while E2 should be an 
extraordinary wave:  

 { } { }1 20, 1, 0 , 1, 0, 0 .= =e e  (26) 

In the Å-coordinates, vectors (26) determine 
polarization of the plane î- and å-waves propagating 
along the axis Z (the tilt of the vector e2 due to 
birefringence is ignored).  

Using Eq. (26), we find  

 *

1 1 2( ) ,o oP= χ ω =P E E p�   (27) 

where  

 *

121 221 321 1 2{ }; ;
o o

P U U= χ + χ + χ =p i j k  

i, j, k are unit vectors of the Å-coordinates. 
Upon substitution of Eq. (27) into Eq. (25), we 

obtain 

 2 2

1 1 1 1( )U k U F∇ + = r ,  (28) 

where 

 
2 2 2

1 1 1 121 221 3212 2

4
( ) 2 ;o o o

o

o

P P P
F k P

x y y zn y

⎧ ⎫π ∂ ∂ ∂⎪ ⎪
= σ − χ + χ + χ⎨ ⎬

∂ ∂ ∂ ∂∂⎪ ⎪⎩ ⎭
r  

 221

1

1 2

2

o

k

n

π
σ = − χ  

is the nonlinear coupling coefficient. 
Equation (28) is the most general form of 

representation of the scalar equation for the ordinary 
wave at the FH frequency.  

Using a KDP as an example, we illustrate how 
the nonlinear coupling coefficient is specified. In the 
χ-coordinates, the following coefficients are nonzero 
in crystals of this symmetry1:  

 123 132 213 231 312 321 36.dχ = χ = χ = χ ≈ χ = χ ≈  

Substituting these values in Eq. (18.2) and using 
Eq. (17), we find that in Eq. (28) χ221 =  
= – 36 sin( )sin(2 ).d− θ ϕ  The equation for the nonlinear 
coupling coefficient is transformed into the well-
known equation presented in all corresponding papers 
(see, for example, Refs. 1 and 2).  

3. Scalar approximation  
for the extraordinary wave  

of the second harmonic 

Write Eq. (4.2) in the ε-coordinates (ε is 
omitted). By definition,4 the field of the å-wave 
should not have a projection of the vector Η on the 
optical axis. Consequently: 

 22

2

1
0.

2

yz

x

EE
H

i k y z

∂⎛ ⎞∂
= − =⎜ ⎟

∂ ∂⎝ ⎠
  (29) 

From Eq. (29) we obtain  

 
2 22 2

2 22 2

2 2
, .

y yz z
E EE E

y z y zz y

∂ ∂∂ ∂
= =

∂ ∂ ∂ ∂∂ ∂
 (30) 

Upon differentiation of Eq. (5.2), three additional 
equations are obtained, which have the following 
form taking into account Eq. (30): 

 

2 2 2
2 22 2

22 2

2

2 22
2 22

22 2 2 2

2

2 2 2

2 2 2

22 2 2 2

2

2
div ,

1 2
div ,

1 2
div ,

y z x

o

y yx

e

x z z

e

E E E

x y x z xx n

E EE

x y yy z n

E E E

x z zy z n

∂ ∂ ∂ π ∂
+ = − β −

∂ ∂ ∂ ∂ ∂∂

⎛ ⎞∂ ∂∂ π ∂
= − + −⎜ ⎟⎜ ⎟∂ ∂ ∂β ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ π ∂
= − + −⎜ ⎟

∂ ∂ ∂β ∂ ∂⎝ ⎠

P

P

P

 (31) 

where n2o and n2e are the main refractive indices at 
the frequency 2ω; β = n2e/n2o. 

After substitution of Eqs. (29) and (31) in 
Eq. (4.2) (see Ref. 4), it becomes clear that any 
exact solution of Eq. (4.2) should also satisfy the 
equation 

 2 2

2 2 2 22

2

2
2 grad div ,

e

o

k C
n

β β

π
∇ + = − −E E P P  (32) 

where  

 

{ } { }2 2

2 2 2 2 2 2 2

2 2 2

2 2

2 22 2 2

, , , , , ;

; 2 .

x y z x y z

e e

P P P P P P

k kn
x y z

β

β

= = β β

∂ ∂ ∂
∇ =β + + =

∂ ∂ ∂

P P

 

Now we substitute Eq. (6.2) into Eq. (32) and after 
scalar multiplication by e2 obtain the equation 

 2 2

2 2 2 2 2 22

2

2
2 grad div ,

e

o

U k U C
n

β β

π
∇ + = − −e P e P   (33) 

which is the sought scalar approximation for 
Eq. (4.2) written in the ε-coordinate system. 

Refer now to the E coordinate system, in which 
the vector e2 has, as we decided above, the form 
(26), and 

 ( )2 1 12 ,
e e
P= χ ω =P E E p�  (34) 

where 

 2

1 122 222 322( ); { };
e e

P U= = χ + χ + χr p i j k   

i, j, k are unit vectors of Å coordinates. 
It follows from Eqs. (34) and (26) that  

 
2 2 2

2 2 122 222 3222
grad div .e e e

P P P

x y x zx

∂ ∂ ∂
= χ + χ + χ

∂ ∂ ∂ ∂∂
e P   (35) 

Now determine vectors e2 and P2 in the ε-
coordinate system. Using Eq. (16), we find  

 2 ;s c= −e i k  (36.1) 

 2

2 1 122 322 222 122 322( ){ ( ) ( )},U s c c s= χ + χ + χ + − χ + χP r i j k  

   (36.2) 
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where, as above, s = sinθ, ñ = cosθ, and i, j, k are 
unit vectors of the ε -coordinate system. 

Taking into account Eq. (36), for the scalar 
product e2Pβ from Eq. (33) we have 

 
2 2

2 1 122 322 122 322

122 322

( )[ ( ) ( )]

,

U s s c c c s

a a

β = χ + χ − β − χ + χ =

= χ − ρχ

e P r
  

where the coefficients à and ρ are determined in 
Eq. (19). 

To find the sought equation for the scalar field 
U2 of the second harmonic, we write Eq. (33) using 
Eq. (16) in the E-coordinates, substitute Eqs. (35) 
and (37) into the equation derived, and obtain 

 
2 2 2 2

2

2 2 22 2 2

1
2 ( ),

b
k U F

x z a az x y

⎛ ⎞∂ ∂ ∂ ∂
+ ρ + + + =⎜ ⎟

∂ ∂∂ ∂ ∂⎝ ⎠
r   (38) 

where the parameter b is determined in Eq. (19), and 
k2 is determined in Eq. (29); 

2 2 2 322

2 2 2

122 222 3222 2

( ) 2 2

2
;

e e

e

o

F k aP Ca P

P
x y x zn x

= σ + ρχ −

⎛ ⎞π ∂ ∂ ∂
− χ + χ + χ⎜ ⎟

∂ ∂ ∂ ∂∂⎝ ⎠

r

 

2

2 1222

2( )e
k

n

π
σ = − χ  

is the second nonlinear coupling coefficient. 
Equation (38) in its content is a full analog of 

Eq. (28), but for the å-wave at the double frequency. 
It should be also noted that the structures of these 
equations coincide completely if we assume β = 1 
(isotropic medium) in Eq. (38). Repeating the 
procedure used in Section 2, we obtain that σ2 from 
Eq. (38) in the KDP crystal depends on 
χ122 = d36sin(θ)sin(2ϕ), that is, we again have the 
well-known equation for the nonlinear coupling 
coefficient. 

Thus, the main results from Sections 2 and 3 can 
be formulated as follows. If, according to the 
conditions of the problem, the approximate 
representations (6) + (26) for the FH and SH fields 
are declared suitable, then Eqs. (28) and (38) 
(written in the E-coordinates in this case) form the 
system of differential equations for determination of 
the amplitudes U1 and U2 from Eq. (6). This system 
is the sought scalar approximation of the rigorous 
problem determined by the wave equations (4). 

4. Integral equations for  
first and second harmonics 

Consider the transition to the integral equation 
for the scalar field U2 of the second harmonic. For 
the field of the first harmonic, all the calculations 
are quite analogous and simpler. 

We refer to the ε-coordinate system and 
introduce the Green’s function g

e(r, r0), which is the 
solution of the equation  

 ( )2 2

2 04 ,
e e e

g k gβ∇ + = − πδ −r r   (39) 

where 2

β∇  and 2ek  are determined in Eq. (32). 

It can be easily shown that the solution of 
Eq. (39) has the form  

 ( )
2

0

1 e
, ,

eik R

eg
R

′

=
′β

r r    (40) 

where 
2

2 20

0 02

( )
( ) ( ) ;

x x
R y y z z

−
′ = + − + −

β

2 2(2 )/ (2 ).
e o

n nβ = ω ω  

Multiply Eq. (33) by ge and Eq. (39) by U2, 
subtract the latter from the former, and integrate the 
result over an arbitrary volume V bounded by the 
closed surface S. As a result, for an arbitrary internal 
observation point r0 is 

 

( ) 2 2

2 0 2 2

2 0

1
( ) d

4

1
( ) ( , )d ,

4

e e

V

e

V

U g U U g V

F g V

β β= ∇ − ∇ −
π

−
π

∫

∫

r

r r r

  

(41)

 

where F2(r) is used to designate the right-hand side 
of Eq. (33). 

In Eq. (41), pass to the new coordinates  

 / , ,x x y y z z′ ′ ′= β = =  (42) 

and for the first integral ( )0( )I r  in the right-hand 

side of Eq. (41) have (dashes are omitted) 

 ( ) 2 2

0 2 2

1
( ) d .

4
e e

V

I g U U g V= ∇ − ∇ β
π ∫r   (43) 

Here, the explicit form of ge can be found from 
Eq. (40) using Eq. (42), and d d d dV x y z

ε ε ε ε
=  should 

be replaced with βdx′dy′dz′ = βdV′. 
By Green’s theorem, for Eq. (43) we have 

 ( ) 2

0 2

1
d ,

4

e

e

S

U g
I g U S

∂ ∂⎛ ⎞= − β⎜ ⎟π ∂ ∂⎝ ⎠∫r

n n

   (44) 

where n is the external normal to the surface S 
bounding the volume V. 

As S, select the plane ZE = 0 of the E-
coordinate system closed by a hemisphere of finite 
radius in the region ZE > 0. The integral over the 
hemisphere is neglected by common reasons,3,5 and 
we conclude that the surface S in Eq. (44) is the 
plane ZE = 0. 

Using Eq. (16), we find that in the  
ε-coordinates the position of the external normal to S 
is determined as  

 { }, 0, ,c s= − −n  (45.1) 

while in the coordinates (42) 

 { }/ ,0, ,c s= − β −n  (45.2) 

(37)



746   Atmos. Oceanic Opt.  /September  2007/  Vol. 20,  No. 9 V.O. Troitskii 
 

 

where, as above, s = sinθ, ñ = cosθ. 
Now substitute Eq. (45.2) in Eq. (44). Then 

 

2 2

0

2 2

1
( ) ( / )

4

( / ) d .

e e

S

e e

U U
I g c g s

x z

g g
U c U s S

x z

∂ ∂⎡= − β − +⎢π ∂ ∂⎣

∂ ∂ ⎤+ β + β⎥∂ ∂ ⎦

∫r

 

 (46)

 

In Eq. (46), return to the ε-coordinates and take into 
account that  

 dS′ ∼
1

d d d dx y x y
ε ε

′ ′ →
β

∼ 
1
d ,S

ε

β
 (47) 

then substitute the result in Eq. (41) and obtain  

( ) ( ) ( )2 0 2 0

2 2

2 2

1
, d

4

1
d .

4

e

V

e e

e e

S

U F g V

U U g g
g c g s U c U s S

x z x z

= − +
π

∂ ∂ ∂ ∂⎡ ⎤
+ − − + +⎢ ⎥π ∂ ∂ ∂ ∂⎣ ⎦

∫

∫

r r r r

 

(48)

 

Write Eq. (48) in the E-coordinates, taking into 
account that from Eq. (16) 

 , ,

E E E E

s c c s

x x z z x z
ε ε

∂ ∂ ∂ ∂ ∂ ∂
= + = − +

∂ ∂ ∂ ∂ ∂ ∂
 

and finally obtain  

 

( )2 0 2 0

0

2

2

0

1
d d ( ) ( , )d

4

1
d d ,

4

e

e

e

z

U x y F g z

g U
U g x y

z z

+ ∞ ∞

− ∞

+ ∞

=
− ∞

= − +
π

∂ ∂⎛ ⎞
+ −⎜ ⎟

π ∂ ∂⎝ ⎠

∫∫ ∫

∫∫

r r r r

  

(49)

 

where ge is the function (40) written in the E-
coordinates and having the form4: 

 
′

=
′β

2

0

e
( , ) ;

ik R

e

a
g

R
r r  (50) 

 ( ) ( ) ( )
2

2 2 2

0 0 0 02
;

a
R x x z z y y z z′ = − + ρ − ρ + − + −

β
  

k2 was determined in Eq. (29). 
Equation (49) written in the Å-coordinates is 

the integral equivalent of the differential equation 
(38). Quite analogously, but without invoking the 
additional coordinate system (42), it can be shown 
that the differential equation (28) is equivalent to 
the integral equation, which  in  the E-coordinates is  
 

 

( )

( )
0

1

1 0 1

0

1 0

0

1
d d

4

1
d d ( ) , d ,

4

o

o

z

z

o

U g
U g U x y

z z

x y F g z

+ ∞

=
− ∞

+ ∞

− ∞

∂ ∂⎡ ⎤
= − −⎢ ⎥π ∂ ∂⎣ ⎦

−
π

∫∫

∫∫ ∫

r

r r r

  

(51)

 

where F1 was determined in Eq. (28); 

 ( ) 1

0, e / ;ik R
og R=r r   (52)  

 ( ) ( ) ( )
2 2 2

0 0 0 ;R x x y y z z= − + − + −   

k1 is determined in Eq. (23). 
In Eq. (49), the surface integral is calculated on 

the plane Z = 0. This allows us to somewhat simplify 
the final result6 by using  

 ( ) ( ) ( )0 0 2 0, , ,
e e m

G g g= −r r r r r r   (53) 

in place of g
e(r, r0). In Eq. (53), ( )2 0, , , ,

m e
g g x y z= − r  

which also is a rigorous solution of Eq. (39). 
Substituting Ge

 in Eq. (49), we make sure that 
under the sign of the volume integral the following 
functions appear  

 1 2 1 2(2 ) (2 )
2 2 2e , e .

i k k z i k k z
e mF g F g− +

∼ ∼  (54) 

Taking into account that k1z and k2z are very 
large, 2 2mF g  from Eq. (54) turns out to be a fast 

oscillating function of the variable z, and the integral 
of this function with respect to dz can be neglected. 
 Thus, invoking Eq. (53) and the analogous 
function for the î-wave:  

 ( ) ( ) ( )0 0 1 0, , , ,
o o m

G g g= −r r r r r r   (55) 

where ( ) ( )1 0 0, , , , ,
m o

g g x y z= −r r r  we obtain in place of 

Eqs. (49) and (51) respectively  

 

( )

0

1 0 1

0

1 0

0

1
d d

2

1
d d ( ) ( , )d ,

4

o

z

z

o

g
U U x y

z

x y F g z

+ ∞

− ∞ =

+ ∞

− ∞

∂⎛ ⎞
= −⎜ ⎟

π ∂⎝ ⎠

−
π

∫∫

∫∫ ∫

r

r r r

  

(56.1)

 

 

( )

( ) ( )

2 0 2

0

2 0

1
d d

2

1
d d , d ,

4

o

e

z

z

e

o

g
U U x y

z

x y F g z

+ ∞

− ∞ =

+ ∞

− ∞

∂⎛ ⎞
= −⎜ ⎟

π ∂⎝ ⎠

−
π

∫∫

∫∫ ∫

r

r r r

   

(56.2) 

where F1 and F2, determined in Eqs. (28) and (38), 
are equal to zero outside the crystal; the observation 
plane z = z0 is internal with respect to the crystal, 
that is,  

 0
o
z L≤ ≤ . (57) 

Equations (56) are just the required system of 
integral equations for the scalar amplitudes U1 and 
U2 of the field at the FH and SH frequencies. When 
deriving equation (56), we assume implicitly that the 
following conditions are met: 

1. The laser beam radius in the crystal should be 
much smaller than the transversal dimensions of the 
crystal itself. This allows us to use infinite limits in 
the integrals with respect to dxdy from Eq. (56). 
 2. Refraction of the fields at the entrance and 
exit sides of the crystal is ignored, that is, both the 
boundary conditions and the solution (56) are 
believed to be defined inside the crystal. 
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3. Reflection from the crystal exit side and wave 
backscattering are neglected, which allows Eq. (56) 
to be used for any internal plane.7 

Note also that in the paraxial approximation 
(see Section 5) equation (56) can be easily 
generalized to the case z0 > L [Refs. 8 and 9]. 
However, within the framework of this paper, this 
possibility is not of principal interest, and we restrict 
our consideration to the scopes determined by the 
inequality (57).  

5. Equations for SHG 
in the paraxial approximation 

Assume that the nonlinear crystal is a slightly 
anisotropic medium, while the laser radiation is 
represented by a slightly divergent beam, that is,  

  1,ρ α μ∼ ∼ �   (58) 

where α is the beam divergence; ρ is the birefringence 
angle determined in Eq. (19). 

Condition (58) is sufficient3 for  

  0 0

0 0

1.
x x y y

z z z z

− −
µ

− −
∼ ∼ �   (59) 

to be true in Eq. (56). 
In this case, for parameters of Eq. (56) we 

obtain4: 

 
2 2

3 40 0

0

0

( ) ( )
( ) ( , ,...),

2( )

x x y y
R z z O

z z

− + −
= − + + µ µ

−
 

 
2 2

3 40 0 0

0

0

( ) ( )
( ) ( , ,...),

2( )

x x z z y y
R z z O

z z

− +ρ −ρ + −
′= − + + μ μ

−
  

  (60) 

 21 ( , ,....),a b Oβ ≈ + μ μ∼ ∼  

where O(μ, μ2, μ3, …) are values of the orders of 
μ, μ2, μ3, etc. 

Another decisive indicator of the paraxial 
approximation is the validity of representation of the 
fields U1 and U2 of interest in the form of quasiplane 
waves:  

 1,22
1,2 1,2( ) ( , , ) e ,

ik z
U A x y z= µ µ µr  (61) 

where μ is the small parameter of Eq. (58). 
Using Eq. (61) for F1 and F2, we obtain from 

Eq. (58):  

 2 1( ) 2
1 1 1 1 22 e ( , ,...),i k k z

F k A A O
∗ −= σ + μ μ   

 12 2 2

2 2 2 12 e ( , ,...).i k z
F k A O= σ + μ μ   

Substitute Eqs. (60)–(62) in Eq. (56) and 
remain the terms up to the second order of smallness 
inclusive in the exponents. For terms outside the 
exponents, we remain by zero order of smallness. As 
a result, in place of Eq. (56) we have the following 
system of integral equations for the complex 
amplitudes À1 and À2 from Eq. (61): 

 

( ) 1

1 0

0

2 2

0 0

1 1

0

1

1

0

2 2

0 0

1 2 1

0

2

( ) ( )
( , )exp d d

2

d e
2 ( )

( ) ( )
( ) ( )exp d d ,

2( )

oz

i z

o

k

ik
A

z

x x y y
A x y ik x y

z

ik
i z

z z

x x y y
A A ik x y

z z

+ ∞

− ∞

+ ∞

∗

− ∞

=− ×
π

⎡ ⎤− + −
× −⎢ ⎥

⎣ ⎦

⎡ ⎤
− σ − ×⎢ ⎥

π −⎣ ⎦

⎡ ⎤− + −
× ⎢ ⎥

−⎣ ⎦

Δ

∫∫

∫

∫∫

r

r r

   

  (63.1) 
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2 0 2
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0 0 0

2

0
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2 1
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0 0 0

2
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( ) ( , )
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( ) ( )
exp d d

2

d e ( )
2 ( )

( ) ( )
exp d d ,
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i z

o

k

ik
A A x y

z

x x z y y
ik x y

z

ik
i z A

z z

x x z z y y
ik x y

z z

+ ∞

− ∞

+ ∞

−

− ∞

=− ×
π

⎡ ⎤− + ρ + −
× −⎢ ⎥

⎣ ⎦

⎡ ⎤
− σ − ×⎢ ⎥π −⎣ ⎦

⎡ ⎤− + ρ − ρ + −
× ⎢ ⎥

−⎣ ⎦

Δ

∫∫

∫ ∫∫

r

r

  

(63.2)

 

where A1(x, y) and A2(x, y) are the boundary 
conditions determined at the entrance into the crystal 
and inside the crystal.  

The direct substitution demonstrates clearly that 
the integral equations (63) are equivalent to the 
following differential equations: 

 
2 2

*

1 1 1 22 2

1

1
e ,

2
ki zA i A A

z ik x y
− Δ

⎡ ⎤⎛ ⎞∂ ∂ ∂
+ + = − σ⎢ ⎥⎜ ⎟

∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦
  (64.1) 

2 2

2

2 2 12 2

2

1
e .

2

ki zA i A
z x ik x y

− Δ
⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂

+ ρ + + = − σ⎢ ⎥⎜ ⎟
∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

  (64.2) 

Equations (64) are called contracted (or parabolic), 
and just they are the basic ones in the theory of 
harmonic generation.1–3 

6. Asymptotically exact solution  
of the system of integral equations 

If to differentiate the left-hand and right-hand 
sides of Eq. (56) with respect to z0, then the system 
of equations can be obtained in the form, for which 
the efficient method of numerical calculation has 
been developed.10 Without consideration of this 
approach, called the method of separation by physical 
properties, let us try to derive the analogous result 
for our particular problem from simple physical 
reasoning. To do this, the basic principles of the 
perturbation method are needed,3 which, in turn, also 
is a method for solution of the nonlinear problem. 
 Represent the system of equations (56) in the 
form  

 
1 1lin 1 1 2

2

2 2lin 2 1

*
( )

ˆ( , , ) ( , , ) ( ),

ˆ( , , ) ( , , ) ( ),

U x y L U x y L LU U

U x y L U x y L L U

= +σ

= +σ

r
r

r

 (65) 

(62)
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where L is the length of the crystal; U1lin and U2lin 
are solutions of the corresponding linear problems for 
the fields at the exit from the crystal (they coincide 

with the integrals over plane in Eqs. (56)); 1L̂  and 

2L̂  are volume integrals from Eqs. (56), and it is 

assumed for simplicity that 1 2σ ≈ σ ≈ σ . 
Equations (65) are solved with the boundary 

conditions, determined at the entrance into the 
crystal: 

 ( ) ( ) ( ) ( )1 10 2 20, ,0 , , , ,0 , .U x y U x y U x y U x y= =   (66) 

It is obvious that at the given conditions (66) the 
functions U1lin and U2lin should also be considered as 
known. 

Rewrite Eqs. (65) as follows: 

 
1 1lin 1 1 2

2

2 2lin 2 1

1

1

*ˆ( , , ) ( , , ) ( ) ( ),

ˆ( , , ) ( , , ) ( ),

V x y L V x y L L V V
L

V x y L V x y L L V
L

= +µ

= +µ

r r

r

  (67) 

where  

 1,2 1,2 0 1,2 1,2 0lin lin/ ; ( ) ( ) / ;V U A V U A= =  

A0 is the maximal value of the function U10(x, y); μ 
is a dimensionless parameter determined by the 
equation  

 0.LAμ = σ  (68) 

If 

 1,µ �  (69) 

then the solution of Eq. (67) should be searched in 
the form  

 

2
1 10 11 12

2
2 20 21 22

...,

... .

V V V V

V V V V

= + μ + μ +

= + μ + μ +
 (70) 

Substitute Eq. (70) in Eq. (67) and equalize the 
coefficients of μ to the same power. Then in the zero 
approximation (unperturbed, linear problem), the 
solution can be written in the form V10 = V1lin, 
V20 = V2lin, then the functions  

 
1 10 11 1lin 1 1lin 2lin

2

2 20 21 2lin 2 1lin

1

1

V V V V L V V
L

V V V V L V
L

= +µ = +µ

= +µ = +µ

*ˆ ,

ˆ
 (71) 

are solutions of Eq. (67) in the first approximation. 
It can be easily shown how the approximations of 
higher orders look, but we restrict our consideration 
to Eqs. (71), which take the following forms in the 
initial designations  

 
1 1lin 1 1lin 2lin

2

2 2lin 2 1lin

*ˆ ,

ˆ .

U U LU U

U U L U

= +σ

= +σ

 (72) 

Approximation (72) is used most often along 
with the assumption that the function 20V  from 

Eq. (70) is zero (the SH field is absent at the 
entrance to the crystal). Thus, in Eq. (72) 

1 1linU U= (the FH field does not undergo the 

nonlinear perturbation), and we come to the so-called 
approximation of the given field, which is widely 
used1–3 to describe the low-efficiency generation of 
harmonics.  

Another quite important aspect should be noted. 
Designate the exact solution of the nonlinear problem 
as (U1,2)E, and the solution in the first approximation 
[that is, Eq. (72)] as (U1,2)F. It can be easily shown 
that the use of the approximation (72) gives the 
following errors in the calculation of interacting 
fields  

 1,2 1,2 E 1,2 F 1,2 E( ) ( ) /( )U U Uη = −⎡ ⎤⎣ ⎦ ∼ μ2,  (73) 

where µ  is determined by Eq. (68).  
Taking into account the above-said, let us pass 

to the direct goal of this Section. Let us divide 
virtually the nonlinear crystal into N layers by 
planes normal to the longitudinal axis, such gaining 
N + 1 planes: 

 ( 1) , / , 1, 2, 1.kz z k L N k N= = − Δ Δ = = +  (74) 

Assume that the solution of Eq. (65) for an arbitrary 
plane z = zk appeared to be known in some way, as 
well as the functions  

 1 21, 2,( , , ) ( , ), ( , , ) ( , ),k k k kU x y z U x y U x y z U x y= =   (75) 

and our task is to find U1 and U2 on the plane 

1kz z
+

=  (that is, to determine 1, 1kU
+

 and 2, 1kU
+

) 

using Eq. (75) as new boundary conditions.  
It is clear that such an “intermediate” task is 

not simpler than the initial one, because it is still 
reduced to the solution of the same equations (65), 
but with other boundary conditions. It is quite 
another matter that selecting the value of N in 
Eq. (74) large enough, we can satisfy the following 
condition with any required accuracy 

 ( )0 0( ) 1,k k k

L
A A

N
μ = σΔ = σ �   (76) 

where A0k is the maximal value of 1, ( , ),kU x y  

consequently, we can obtain sufficiently good 
approximation for 1, 1kU

+
 and 2, 1kU

+
 using Eq. (72). 

 Using this feasibility, we find that  

( ) ( )

( ) ( )

1, 1 1 1lin, 1nonl,

2, 1 1 2lin, 2nonl,

, , , , ( , , ),

, , , , ( , , ),

k k k k

k k k k

U x y z U x y z U x y z

U x y z U x y z U x y z

+ +

+ +

= = Δ + = Δ

= = Δ + = Δ

   

  (77) 
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where 
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*
, ,

, ,

,
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( ), ( ) ( , ) ,

ˆ( )

[ ( )] ( , ) ;

  

 { } { }0 0 0 0, , , , , ;x y z x y z= =r r   

z and z0 vary between 0 and Δ; the explicit forms of 
F1 and F2 are given in Eqs. (28) and (38), 
respectively. 

Formula (77) is recursion for determining the 
solution of the system of equations (65) on any plane 
z = zk inside the nonlinear crystal. Actually, at the 
first step (k = 1) we use the boundary conditions 
(66), that is, assume that  

 
( ) ( )

( ) ( )

1,1 1 10

2,1 1 20

, , 0 , ,

, , 0 ,

U x y z U x y

U x y z U x y

= =

= =

 (78) 

and determine U1,2(x, y, z2) and U2,2(x, y, z2) using 
Eqs. (77) and (78). Then, upon substitution of these 
equations in Eq. (77) as the following boundary 
conditions, we find the solution of the problem on 
the plane z = z3, and so on. As a result, having 
repeated this process N times, we determine the 
functions  

 ( ) ( )1, 1 1 1, , , ,N NU x y z U x y L
+ +

=  

and 

 ( ) ( )2, 1 1 2, , , ,N NU x y z U x y L
+ +

= ,   

that is, the sought equations for the scalar fields U1 
and U2 at the exit from the nonlinear crystal. 

Estimate the error inevitably arising with the 
use of Eq. (77). Referring to Eq. (73), we notice 
that, replacing the rigorous solution by the 
approximate one (72) at every step, we neglect the 

terms proportional to 2

kµ  from Eq. (76). Thus, as a 

result, after the required N steps, we lose the values 
of the order of 

 

( )

( )

2
22 2

0 0,max

1

2 2
0

( )

.

N

k k

k

L
N N A N A

N

LA

N N

=

⎛ ⎞μ ≤ μ = σΔ = σ =⎜ ⎟
⎝ ⎠

σ μ
= =

∑

(79)

 

It follows from Eq. (79) that, selecting the number 
N large enough, we can always reduce the error 
introduced by Eq. (77) to the required minimum. 

Thus, we can state that the problem is solved in 
the formally methodological aspect. Equation (77) is 
just the sought analytical solution of the system of 
nonlinear equations represented as a recurrence 
equation. At the given finite value of N, the solution 
is approximate and its accuracy is determined by 
Eq. (79). If N tends to infinity, then the error of 
calculations tends to zero, and this makes Eq. (77) 
the asymptotically exact solution of the nonlinear 
problem. 

Despite the proposed approach assumes the use 
of a computer, we are inclined to believe that 
equations (77) are just the approximate solution of 
the system of equations, rather than the algorithm for 
numerical calculations. In our opinion, the argument 
in favor of the above-said is that, unlike the classical 
numerical methods (for example, proposed in Ref. 9), 
equations (77) keep the physical meaning and 
practical significance even when N is equal to unity. 
Moreover, we can point out the situations (for 
example, if the value of A0 in Eq. (67) is rather 
small), when at N = 1 equations (77) turn out to be 
a good approximation to the exact solution. 

It should be noted once again that equations (77) 
have only methodological significance. It is quite 
difficult to use them as an algorithm for practical 
estimation at N > 1. Therefore, to simplify the 
problem, let us get rid of integrals entering into the 
equation for nonlinear additions. For this purpose, 
we use the general physical reasons not related to the 
theory of numerical methods and consider the 
situation when the number Ν is large enough. 

It can be easily shown that in Eqs. (77) the 
condition z0 → 0 (N → ∞) transforms the exponents 
from go

(r, r0) and g
e
(r, r0) into the fast oscillating 

functions of x and y compared to F1(r)/R and 
F2(r)/R′. This means that the integrals over dx and 
dy can be estimated asymptotically by using the 
method of stationary phase.5 As a result, for 
nonlinear additions from Eqs. (77) we obtain  
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 (80) 
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where for the points of stationary phase we have  

 0 01 1,k kx x y y= =  è 0 0 02 2, .k kx x z z y y= − ρ + ρ =  

The physical meaning of these actions is 
absolutely clear. When calculating the nonlinear 
additions, we neglected the diffraction. It is obvious 
that the smaller the distance Δ, at which the 
nonlinear interaction occurs, the more accurate is the 
approximation. 

Depending on the required accuracy, many 
versions of Eqs. (80) simplification can be proposed. 
We use the most rough approximation, but leading to 
the simplest final results.  

The integrals in the right-hand side of Eqs. (80) 
can be considered as functions Φ1,2(z0). Represent this 
functions as an expansion into the Taylor series in 
the vicinity of the point z0 = 0. After elementary 
transformations, restricting the consideration to the 
first nonzero terms of the series, we obtain  

 ( )
0

0
1,2 0 1,2 0 0 1,2 0 0 0

0

( ) , d ( , ) .

z

z

z F z z z z F z z z
=

Φ = ≈ =⎡ ⎤⎣ ⎦∫   (81) 

Using Eq. (81), for Eqs. (80) we have  
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2
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k k k k k

k k k
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k

iz
U F U x y z

k

= −

= −

r
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 (82) 

in which it is taken into account that  

 
1lin, 1,

2lin, 2,

( , ,0) ( , , ),

( , ,0) ( , , )

k k k

k k k

U x y U x y z

U x y U x y z

=

=

  

obviously follows from Eqs. (75) and (77). 
The physical meaning of approximation (82) is 

also undoubted. The transition to Eqs. (82) means 
that the fields U1,k and U2,k do not change at the 
distance z0, that is, within one step. In other words, 
the use of Eqs. (82) means that the approximation of 
plane waves (or, more precisely, beams with the 
plane phase front) is used to calculate nonlinear 
additions. The asymptotic (at Δ → 0) accuracy of this 
approximation was discussed earlier.8 

We substitute Eqs. (82) into Eqs. (77) and 
obtain the required simplified version of the 
recurrence equation: 

1, 1 1 1lin,

*
1 1, 2,

1

2
22, 1 1 2lin, 1,

1

( , , ) ( , , )

[ ( , , ), ( , , )],
2
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2

k k k

k k k k

k k k k k

U x y z U x y z

i
F U x y z U x y z

k

i
U x y z U x y z F U x y z

k

+ +

+ +

= = Δ −

Δ
−

Δ
= = Δ −

   

The final equations (83) turned out to coincide 
exactly with the result, obtained by the method of 
separation by physical properties proposed in Ref. 9 
and applied directly to the system of, generally 
speaking, initial differential equations. Since the 
errors arising with the use of equations of the form 
(83) have been analyzed in detail in Ref. 9, we do 
not dwell on this issue here.  

Comparing the recurrence equations (77) and 
(83) or two algorithms for solution of the same 
system of equations, one can easily notice their 
principal difference. At the fixed value of N, the 
accuracy of solution of Eqs. (83) is already 
independent of the amplitude of the FH field, which 
is characteristic of the Eqs. (77) solution. It is quite 
clear, because both approximations (80) and (82) 
remain valid for any amplitudes of the interacting 
fields, if z0 is short enough. Since the use of these 
approximations is true only at a rather small step, 
equations (83) lose the physical meaning at N → 1. 
It was just what we kept in mind when spoke about 
the different methodological contents of the proposed 
approach (77) and already known approach (83).  

Conclusions 

In this paper, the transition to the scalar 
approximation is demonstrated using the problem on 
SHG at the scalar îîå-interaction of waves in a 
quadratically nonlinear crystal as an example. It 
should be noted that the methodological basis for this 
transition, as well as in the problem on the linear 
field, is formed by the general definitions for 
ordinary and extraordinary waves4 propagating in a 
uniaxial medium. Thus, it seems quite obvious that 
all the above-said can be generalized to any kinds of  
nonlinear processes proceeding in a uniaxial medium, 
that is, to the cases when the electromagnetic 
radiation can exist only in the form of î- or å-wave. 
In this case, as well as in the situation considered, 
any nonlinear problem of this type is reduced to the 
system similar to Eqs. (56). It is clear that the 
number of integral equations and the form of 
integrands (Fj) vary depending on the particular type 
of a nonlinear process under consideration.  

Rather rigorous derivation of the analytical 
solutions for the scalar amplitudes of the interacting 
waves (and the corresponding systems of differential 
and integral equations) directly from the Maxwell 
equations in this paper is, in our opinion, of 
undoubted methodological significance. It is not so 
obvious whether the use of equations of the form (56) 
makes practical sense within the framework of the 
scalar theory or the paraxial approximation, that is, 
well-known equations (63), is sufficient. It is clear 
that as the divergence of the laser beam increases, the 
contribution of the terms neglected during the 
derivation of the parabolic equations [in the first 
turn, with the expansions (62) in mind] increases.  
In this sense, equations (56) should seemingly 
provide a more accurate solution of the problem. 

(83)



V.O. Troitskii Vol. 20,  No. 9 /September  2007/ Atmos. Oceanic Opt.   751 
 

 

However, at the same time, it should be kept in mind 
that with the increase of the radiation divergence the 
possibility of using the scalar approximation, that is, 
representations (6), becomes less obvious. In our 
opinion, the unambiguous answer to this question can 
be obtained only in the presence of rigorous solution 
of the principally vector problem, which is beyond 
the scope of this paper. 
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