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The problem of the light reflection from a turbid medium is considered. The method of the 

single scattering separation into the scattering, leading or not leading to a change in the radiation 
propagation direction relative to normal to the surface is offered. The reflectance is represented as a 
series in the scattering multiplicities with single change of the direction. For each multiplicity the 
precise linear integro-differential equation with homogeneous boundary conditions is derived. The 
application of the method of discrete ordinates brings to the linear matrix equations. The solution of 
these equations without application of the small angle approximation in the form of matrix 
exponential curves is obtained. The application range of the quasi-single scattering approximation 
depending on the optical parameters of the sensed medium is shown.  

 
At present, the quasi-single scattering 

approximation is used for interpretation of results of 
optical remote sensing by means of both lidar and 
satellite measurements. This paper is devoted to the 
problem of reflection of solar radiation from the 
Earth’s atmosphere. In the quasi-scattering 
approximation, the brightness coefficient of the 
reflected radiation is the first term of the series in 
the theory of disturbances in terms of 
backscattering1: 
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where τ is the optical thickness of the layer; 
Ω0 = {ϕ0, θ0} is the unit vector of the radiation 
incidence direction; Ω = {ϕ, θ} is the unit vector of 
the direction of detecting the radiation; ϕ, θ are the 
azimuth and polar angles, respectively; L0(τ, Ω0, Ω) 
is the brightness coefficient of the transmitted 
radiation in the small-angle approximation.2 The 
main problem of the use of this approximation is an 
ambiguity in dividing the scattering phase function 
x(γ) into “sharp” small-angle part xo(γ), describing 
the forward scattering, and the “obtuse” part xt(γ) 
describing the backward reflection: 

 γ = − γ + γ
o

( ) (1 ) ( ) ( ),tx a x ax  (2) 

where a is a small parameter; γ is the scattering 
angle.  

Solution of the problem of determining xt(γ) can 
not be formalized and is of a subjective character. 
But at a successful dividing, a good precision can be 
reached in interpretation of the reflected signal. The 
study of beam trajectories in turbid media, carried 
out with the use of programs of statistical simulation 
shows that the small-angle approximation does not 
describe the radiation flux reflected from a real 

medium even at strongly asymmetry of elastic 
scattering phase function. So the problem of 
determination of the application range of the quasi-
single scattering approximation becomes urgent.  

For reflection of radiation from turbid medium, 
at least one “strong” scattering is necessary (Fig. 1), 
which leads to a change of the radiation direction 
propagation relative to the normal direction to the 
surface. In the case of reflection from some optically 
dense media, the portion of “strong” multiple 
scattering in the reflected signal significantly 
increases. 

 

 

Fig. 1. The trajectory of the beam reflected from the turbid 
medium. 

 
Typical trajectory of a beam reflected from a 

turbid medium obtained with a program for 
statistical simulation is shown in Fig. 1. The single 
scattering albedo Λ = 0.98 and the Heyney–
Greenstein scattering phase function with the 
parameter g = 0.95 were used in the simulation. As is 
seen against the background of the multiple 
scattering, which do not lead to a change of the 
propagation direction relative to the normal to the 
surface, the “strong” scattering is pronounced, which 
changes the direction of downward flux to upward, 
and vise versa. It enables one to divide the scattering 
phase function into the “positive” part x+(γ) 
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describing scattering, which does not lead to the 
change of the direction of radiation propagation, and 
the “negative” part x–(γ) describing the “strong” 
scattering. Such division is unambiguous and occurs 
in each scattering event depending on the direction of 
incidence of the scattered radiation. 

In this case one should expect that the 
brightness coefficient of the reflected radiation is 
expanded in terms of multiplicity of the “strong” 
scattering: 
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τ Ω Ω = τ Ω Ω∑  (3) 

If consider only “strong” scattering, we obtain 
more precise, than quasi-single scattering, 
approximation. Analysis of the solution, taking  
into account the multiple “strong” scattering, enables 
us to determine the conditions, under which  
the contribution of multiple “strong” scattering is 
inessential, and, hence, the upper boundary of 
applicability of the quasi-single scattering 
approximation. 

The brightness coefficient of the reflected 
radiation is characterized by the reflection function, 
which is the solution of the boundary problem of the 
transfer equation. But the transfer equation itself 
contains surplus information about the behavior of 
the radiation flux in the medium depth, therefore, it 
is better to determine the reflection function from 
equations containing only this function as unknown. 
Such equations are known. They are the nonlinear 
integro-differential Ambartsumyan–Chandrasekar 
equations.3 Let us write the Ambartsumyan–
Chandrasekar equation for the brightness coefficient 
of the reflected radiation R(τ, Ω0, Ω) using the 
division of the scattering phase function into x+(γ) 
and x–(γ): 
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(4)

 

where 0cos ,ξ = θ  cosη = θ , Ω ± are the normal 

directions to the surface. It is easily seen that the 
scattering phase function in the Ambartsumyan–
Chandrasekar is automatically divided into the 
“positive” and “negative” parts within the range of 
integration. Hence, the “positive” and “negative” 
parts of the scattering phase function are the parts of 
the real scattering phase function, however, we keep 
the upper indices for clearness. 

Let us write the boundary condition for the 
integro-differential equation (4) in the case of 
reflection from a free layer: 

 ( )0
0

, , 0.R
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τ Ω Ω =  (5) 

The left part of Eq. (4) describes scattering of 
radiation without a change of the direction of motion 
relative to the normal direction to the surface. The 
right part, on the contrary, contains terms with 
“strong” scattering. If to use the expansion of the 
brightness coefficient of the reflected radiation in 
terms of multiplicity of “strong” scattering (3), then 
the nonlinear integro-differential equation (4) is 
divided into linear equations for each multiplicity of 
the “strong” scattering; k = 2n + 1, n = 0, 1, 2, … 
are odd terms corresponding to the reflected 
radiation: 
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(7)

 

Let us solve Eqs. (6) and (7) by the method of 
discrete ordinates (DO).3,4 To do it, let us expand 

( )0, ,kR τ Ω Ω  and the scattering phase function in 

terms of azimuth harmonics: 
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Replace the integrals in Eqs. (6) and (7) with 
quadrature sums, introducing the nodes μi and 
weights ai of the quadrature formula, as well as the 
grid {ηi, ξj} by variables η, ξ: 
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(10)
 

For the introduced grid, let us determine the 

matrices of azimuth reflection harmonics ( )kR τ

����

 

(missing the index m) of “positive” x
+
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 and 
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 parts of the scattering phase function 
as follows: 
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Then the integro-differential equations (6) and 
(7) are reduced to the matrix differential equations: 
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where E
���

 is the unit diagonal matrix; diag( );iS a=

��

 

diag(1 ).iψ = μ

��

 

Consider the reflection from a semi-infinite 
medium. In this case, the dependence of the 
brightness coefficient of radiation reflected from the 
optical thickness disappears, and the differential term 
in Eqs. (12) and (13) is 
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the accent means the transposed matrix. 
Solution of the linear matrix equation (14) is 

studied in detail in the matrix theory,15 and one can 
write it in the form of convolution: 
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where ( )exp .  is the matrix exponent. Then calculate 

the brightness coefficient of reflected radiation using 
Eqs. (3) and (8): 
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The matrix structure of the solution allowed us 
to realize calculations by Eqs. (15)–(17) using the 
mathematical software package MatLab. At the 
modern level of development of computers, 
calculation with very high precision needs several 
seconds for any degree of asymmetry of the scattering 
phase function. 

Consider again reflection of radiation from a 
layer. Let us solve the matrix differential equation 
(12) with the boundary condition (5) by means of the 
Laplace transform. The peculiarities of application of 
the Laplace transform to matrix differential equations 
are presented in Ref. 5. After transformations, we 
obtain the solution of Eqs. (12) and (13) in the form 
of convolution of the matrix exponents: 
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Equations (15) and (18) describe the reflection 
with one “strong” scattering. The form of solution 
for the brightness coefficient of the reflected 
radiation [Eq. (18)] in approximation of “strong” 
single scattering is similar to solution of Eq. (1) 
obtained by means of the quasi-single approximation. 
But, contrary to Eq. (1), the small-angle 
approximation was not used in deriving Eqs. (15) 
and (18). 

The results of calculation of the brightness 
coefficients of reflected radiation are shown in Fig. 2: 
from semi-infinite turbid medium and from the layer 
τ = 5. Calculations were performed using Eq. (15), 
the modified method of spherical harmonics6 and the 
Monte Carlo method (program SPIM-L). The 
possibility is realized in the program SPIM-L to 
follow the multiplicity of the change of the direction 
of motion relative to normal to the surface. The 
calculations and the results of simulation were 
compared for the sums of multiplicities of “strong” 
scattering up to the multiplicity k, inclusively. The 
value Λ = 0.98 and the Heyney–Greenstein scattering 
phase function with g = 0.95 were used in 
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calculation and simulation. Comparison with the 
results of calculations according to Ref. 6 shows that 
the contribution of multiplicities k > 19 is inessential 
at these parameters. 

 

 
a 

 
b 

Fig. 2. The brightness coefficients of the reflected radiation: 
reflection from semi-infinite turbid medium (a), reflection 
from the layer of the optical thickness τ = 5 (b). Incidence 
angle is normal. Numbers denote the multiplicity of 
“strong” scattering k. Solid line shows the results of 
calculation by Eq. (15). Points indicate calculation by the 
modified method of spherical harmonics6 and histogram 
shows the results of statistical simulation with the program 
SPIM-L. 

 

One can obtain the condition from analysis of 
Eqs. (15) and (16), when the reflection with one 

“strong” scattering determines the whole reflected 
radiation flux. To do this, it is necessary that 
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If to use the estimates 
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we obtain from inequalities (21) and (22) 
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= η η∫  determines the probability of 

“strong” scattering; ε is the value much less than 1. 
At decreasing the degree of asymmetry of the 
scattering phase function, the contribution of 
“strong” scattering of higher multiplicities increases. 
On the contrary, at decreasing the value of the single 
scattering albedo, the contribution of single “strong” 
scattering increases. When reaching some critical 
value Λg, the reflection is formed mainly by single 
“strong” scattering. The parameter Λg depends on the 
scattering phase function. One can propose the 
estimate of the value Λg for the Heyney–Greenstein 
scattering phase function: 

 
3 2

1
.
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g

g
Λ ≈

+ −
 (24) 

If parameters of the medium have satisfied the 
condition Λ < Λg, it is possible to apply the quasi-
single scattering approximation to calculation of the 
brightness coefficients of radiation, reflected from 
semi-infinite turbid medium. 

In the case of reflection of radiation from real 
medium of the τ thickness, let us use the ratio 

Σρ τ θ ρ τ θ1 0 0( , ) ( , )  for estimation of the application 

range of the quasi-single scattering approximation. 
Here 

 ρ τ θ = τ Ω Ω Ω∫1 0 1 0( , ) ( , , )dR   

is the total brightness coefficient of the reflected 
radiation with single “strong” scattering;  
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 Σρ τ θ = τ Ω Ω Ω∫0 0( , ) ( , , )dR   

is the total brightness coefficient of the reflected 
radiation.  

The dependence of the ratio ρ1(τ, θ0)/ρΣ(τ, θ0) 
on the optical thickness is shown in Fig. 3. The 
incidence angle is normal. 

 

 

Fig. 3. The dependence of the ratio ρ1(τ, θ0)/ρΣ(τ, θ0) on 
the optical thickness: curves (1) are for cloud cover C1, and 
(2) is for haze L. Incidence angle is normal. Solid line 
shows the results of calculations for a wavelength of 300 nm 
and dotted line is for a wavelength of 700 nm. 

Calculation of ρ1(τ, θ0) was performed by 
Eq. (18), and ρΣ(τ, θ0) was calculated by Eq. (19) 
and formulas from Ref. 6. The Deirmenjian 
parameters7 were used in calculating the scattering 
phase function. The range of optical thickness was 
taken with a reserve for determination of the 
application range of the quasi-single scattering 
approximation. The effect of absorption by ozone was 
not taken into account in calculations, because ozone 
is variable gas component of the atmosphere 
depending on season, day, and geographic place. So 
to take into account this factor, additional data are 
necessary, which do not affect the technique. 
However, the appearance of absorption leads to 
decrease of the single scattering albedo, and under 
condition that Λ < Λg, the error of quasi-single 
approximation decreases. 

The dependence of ρ1(τ, θ0)/ρΣ(τ, θ0) on the 
thickness and the type of turbid medium is shown in 
the Table. One can conclude from analysis of the 
Table that the contribution of multiple “strong” 
scattering at reflection from the optical thickness 
τ > 2 into the brightness coefficient is more than 10% 
for all types of clouds and hazes. Hence, the 
magnitude of ρ1(τ, θ0)/ρΣ(τ, θ0) determines the 
minimum error at the use of the quasi-single 
scattering approximation. 

 

Table. Dependence of ρ1(τ, θ0)/ρΣ(τ, θ0) on the thickness and type of turbid medium 

cloud C1 cloud C3 haze M haze L haze H 
τ 

300 nm 700 nm 300 nm 700 nm 300 nm 700 nm 300 nm 700 nm 300 nm 700 nm 

0.5 0.9814 0.9797 0.9798 0.9715 0.9591 0.9464 0.9662 0.9559 0.9490 0.9339 

1.0 0.9578 0.9549 0.9552 0.9406 0.9176 0.8954 0.9302 0.9119 0.9009 0.8705 

1.5 0.9325 0.9286 0.9290 0.9096 0.8786 0.8501 0.8950 0.8712 0.8581 0.8161 

2.0 0.9069 0.9022 0.9026 0.8793 0.8422 0.8096 0.8614 0.8337 0.8196 0.7687 

2.5 0.8817 0.8763 0.8768 0.8501 0.8083 0.7731 0.8296 0.7991 0.7846 0.7271 

3.0 0.8572 0.8513 0.8518 0.8222 0.7768 0.7400 0.7997 0.7672 0.7526 0.6900 

3.5 0.8338 0.8273 0.8279 0.7957 0.7477 0.7098 0.7716 0.7377 0.7234 0.6570 

4.0 0.8114 0.8045 0.8051 0.7706 0.7206 0.6822 0.7454 0.7105 0.6965 0.6273 

4.5 0.7902 0.7829 0.7835 0.7471 0.6956 0.6569 0.7209 0.6854 0.6717 0.6006 

5.0 0.7700 0.7624 0.7630 0.7249 0.6723 0.6337 0.6981 0.6621 0.6489 0.5766 

5.5 0.7509 0.7430 0.7436 0.7041 0.6508 0.6123 0.6769 0.6406 0.6277 0.5549 

6.0 0.7329 0.7246 0.7253 0.6846 0.6309 0.5925 0.6570 0.6207 0.6082 0.5354 

6.5 0.7158 0.7073 0.7080 0.6663 0.6124 0.5743 0.6386 0.6023 0.5900 0.5176 

7.0 0.6997 0.6910 0.6917 0.6492 0.5952 0.5575 0.6215 0.5852 0.5731 0.5016 

7.5 0.6845 0.6756 0.6763 0.6332 0.5793 0.5419 0.6055 0.5693 0.5575 0.4870 

8.0 0.6702 0.6611 0.6618 0.6183 0.5645 0.5275 0.5906 0.5546 0.5429 0.4738 

8.5 0.6566 0.6474 0.6482 0.6043 0.5508 0.5142 0.5768 0.5410 0.5294 0.4617 

9.0 0.6438 0.6345 0.6353 0.5913 0.5381 0.5018 0.5639 0.5283 0.5168 0.4507 

9.5 0.6318 0.6224 0.6231 0.5791 0.5263 0.4903 0.5519 0.5166 0.5050 0.4407 

10.0 0.6204 0.6109 0.6117 0.5676 0.5152 0.4796 0.5407 0.5056 0.4940 0.4315 
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