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We consider peculiar features of using compound signals in remote sensing of spatially distributed 
non-stationary objects (SDNO) like, for instance, meteorological objects or vortex inhomogeneities in 

the atmosphere. We also analyze the influence of the shape of the ambiguity function (AF) of a vector 
sounding signal on the accuracy of the estimate of the matrix response function (MRF) of a SDNO, 
which is its compact description, allowing joint representation of range distribution, velocities, and 
polarization parameters of elementary reflectors, a set of which forms the SDNO. It is shown that for 
correct MRF estimation signals are needed, ambiguity function of which has a needle shape. The results 
of simulation of an algorithm for MRF estimation in cases of using three types of signals: phase-code-
modulated signal, chirp signals with the bandwidth duration product N = 104, and a simple signal 
with a unity bandwidth duration product. 

 

Introduction 
 

The onrush development of the technology for 
formation and processing signals, including those in 
the optical range, enables one to use complex signals 
with large bandwidth duration product for solving  
the problems of remote sensing of the environment.  
Use of such signals makes it possible to decrease the 
peak power of radiation at keeping the potential of the 

system and the parameters of range and velocity 
resolution of sounding. To achieve this, one needs clear 
understanding of the physics of formation of the system 
response under matched filtering of complex signals 
reflected by spatially distributed non-stationary 

objects (SDNO) formed by an ensemble of “small” 

inhomogeneities, located at different distances and 
moving at different speeds. Correct estimation of the 
matrix response function of a SDNO, in which its 
polarization and coordinates are presented, is only 

possible if certain requirements to the shape of the 
uncertainty function (UF) of the sensing signal are met. 
 

Matrix response function of a spatially 
distributed non-stationary object  
and algorithm for its estimation 
 

The matrix response function (MRF) of an object 
sounded with radar is the development of the 

conception of its scattering phase matrix. Such a 
matrix Si formalizes transformation of the vector u0 
describing the complex amplitudes of orthogonal 
polarized components of a plane sounding wave to 
the vector upi the plane wave reflected backwards, 
due to diffraction of the field on an immobile point 
object considered as a spatial inhomogeneity: 
upi = Si ⋅ u0, where the 2×2 operator Si is set by four 

complex coefficients .

i
ijS�  In the general case, the vector 

u0 has the form 

 ( )
T

0 1 2( , ) ( , ); ( , ) ,t f t f tω = ω ωu
� �  (1) 

where 1( , )f t ω�  and 2( , )f t ω�  are the complex functions 

(t is the current variable, and ω is the parameter) 
describing the frequency and time structure of the 
orthogonal polarized components of the emitted field, 
T is the symbol of transposition. 

In the general case of motion of a point object with 
the radial velocity Vi, its coordinates (distance and radial 
velocity) and polarization properties can be presented 
together in the shape of a matrix response function: 
 

 ( , ) ( , ) ,i i i i=τ Ω δ τ Ω ⋅g S  (2) 

where δ(τi, Ωi) is the delta-function set at the point 
with coordinates (τi, Ωi); τi = 2Di/c is the delay time 
of the signal upi(t, ω) reflected from it relative to the 
incident sounding signal u0(t, ω), and Ωi = 2Vi/λ0 is 
the Doppler shift of the reflected signal frequency 
caused by the radial motion of the reflector (c is the 
speed of propagation of the wave, λ0 is the wavelength 
of the incident wave). In such a description of the 
scattering properties of the object, correspondence 
between the incident and reflected vector signals is 
determined by the relationship in the form of a 
bilateral matrix convolution  

 p 0( , ) ( , )* ( , )i it tω = τ Ω ω =u g u  

 0( , ) ( – , – )d d .i t= τ Ω ⋅ τ ω Ω τ Ω∫ ∫g u  (3) 

In the frameworks of the conception of “sparkling 
points”, one can present SDNO in the form of a set 
of elementary point reflectors distributed over space 
and having, in general case, different velocities of 
radial motion relative to the reference point. Also one 
can present the full response of a SDNO in the form 
of the sum u∑(t, ω) of responses upi(t, ω) from each of 
the elementary reflectors forming it: 
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the matrix response function G∑(τ, Ω) is equal to the 
sum of MRF of elementary reflectors, the set of which 

forms the SDNO. In the general case, the problem of 
joint estimation of polarization and coordinates of the 
objects sounded is to estimate the matrix response 
function G∑(τ, Ω), which involves these parameters, 
using the reflected signal u∑(t, ω) recorded at the 
known sounding signal u0(t, ω). 

As was shown1 in the case when reflected signal 
u∑(t, ω) is observed in the presence of a white-noise 

unpolarized component, the optimal estimate ˆ ( , )∑ τ ΩG  

of the response function G∑(τ, Ω) is formed by use of 
a vector bilateral matrix convolution of the reflected 
and sounding vector signals set by the relationship 
 

 0( , ) ( , ) ( , )t tΣω = ω τ Ω =J u u�  

 ∗
∑ − τ ω − Ω ⊗ τ Ω τ Ω =∫∫u u0( , ) ( , ) d dt  

 

0

0 0

( , )

( , )* ( , ) ( , )

t

tΩ∑

ω

Ω= τ ω τ =

X

G u u�
���������

 

 ˆ( , ) ( , ) ( , ),0* t∑ ∑Ω= τ ω ⇒ τ ΩG X G  (5) 

where “� ” is the symbol of vector convolution, “⊗” is 

the symbol of Kroneker product. If certain requirements 
to the signals 1( , )f t ω�  and 2( , )f t ω�  have been met in 
Eq. (1), such that the following relationship is fulfilled 

 0 0 0( , ) ( , ) ( , )t t +

ω = ω τ Ω =X u u�  

 11 12

21 22

( , ); ( , ); 1 0
( , ) ,

0 1( , ); ( , );

B t B t
B t

B t B t

⎛ ⎞ω ω ⎛ ⎞
= ≈ ω⎜ ⎟ ⎜ ⎟⎜ ⎟ω ω ⎝ ⎠⎝ ⎠

� �

�

� �

 (6) 

the error in estimating MRF formed according to 

Eq. (5) is proportional to the level of δ-correlation 
between the signals 1( , )f t ω�

 and 2( , )f t ω�

 for all possible 
shifts in frequency and time delay and is the best 

according to the criterion of the maximum signal-to-
noise ratio at the output of the system processing  
the vector signal. The shape of the functions 11( , )B t ω�   
and 22( , )B t ω�

 is identical to that of the generalized 

autocorrelation functions of the signals 1( , )f t ω�  and 

2( , )f t ω� , respectively. The shape of the functions 

12( , )B t ω�  and *

21( , )B t ω�  is identical to that of the 
generalized correlation functions of the signals 1( , )f t ω�  
and 2( , ).f t ω�

 The signals, for which the relationship (6) 
has been fulfilled, are called orthogonal,2 and the 
function X0(t, ω) is called the matrix uncertainty 
function (MUF) of the vector signal u0(t, ω).1 

The general scheme of the algorithm (5) for 
optimal estimation of MRF of a spatially distributed 
object1,3,4 is shown in Fig. 1. 

Two scalar signals are formed at the output of 
the device for formation of the orthogonal 
components of the sounding vector signal (FOCVSS): 

1( , )f t ω�  and 2( , ),f t ω�  obeying the relationship (6), 

which drive, through the decoupling device 

(circulator), the branches of the polarization divider 

PD of the transmitting antenna. The wave is emitted 
to space along the direction toward SDNO, which is 

described by the vector ( )
T

0 1 2( ) ( ); ( ) .t f t f t=e
� �  

The wave eð(t) reflected from the SDNO is 
received by the same antenna (detector), and two 

scalar signals p1( )f t�  and p2( )f t�  are formed at the 

output of the orthogonal branches of the polarization 
divider, the set of which composes the observed vector 

signal ( )
T

p p1 p2( ) ( ); ( ) .t f t f t=u
� �  Each of the orthogonal 

components p1( )f t�

 and p2( )f t�

 of this signal is processed 

by two-dimensional filters SF12 matched to the signals 
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Fig. 1. Algorithm for estimation of the matrix response function of a spatially distributed non-stationary object. 
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1( , )f t ω�  and 2( , ),f t ω�  at the output of which the scalar 

responses ω
� ( , )ijJ t  are formed, the set of which, in their 

turn, is the estimate ˆ ( , )∑ τ ΩG  of the matrix response 

function of the SDNO, provided that the relationship (6) 

is valid for the signals 1( , )f t ω�

 and ω
�

2( , ).f t  In practice, 

the two-dimensional matched filter is realized in the 
form of a multi-channel (in frequency) system for 
joint processing of the received signals.5 

 

Requirements to the signals 
determining the frequency and time 

structure of the orthogonally polarized 
components of the sounding flux 
 

The following relationships follow from Eq. (6) 
for the signals 1( , )f t ω�  and 2( , ),f t ω�  determining the 

frequency and time structure of the components of 
the sounding flux with the orthogonal polarization: 
 

 11 22( , ) ( , ) ( , ),B t B t B tω ≈ ω = ω
� � �  (7) 

 
12 21( , ) ( , )

(0,0) (0,0)

B t B t

B B

ω ω

≈

� �

� �

 = δ << 1 → 0. (8) 

The formed estimate of the MRF of the spatially 
distributed object is described by the formula 
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 ( , )* ( , )B tΣ= τ Ω ω ⇒G � ˆ ( , ).Σ τ ΩG  (9) 

It is obvious, that in the ideal case, when the 
mutual correlation 12( , )B t ω�

 of the signals 1( , )f t ω�  and 

2( , )f t ω�  has been equal to zero for all possible relative 

shifts in frequency and time, and the forms of the 

generalized autocorrelation functions 11( , )B t ω�

 and 

22( , )B t ω�  of these signals have degenerated to delta-

function, i.e., when the following relationship holds: 
 

 0 0 0

1 0
( , ) ( , ) ( , ) (0,0) ,

0 1

matrix delta-function

+
⎛ ⎞

ω = ω τ Ω = δ ⎜ ⎟
⎝ ⎠

�������

�t tX u u  (10) 

the formed estimate (9) is absolutely precise (the 
filtering property of the delta-function). 
 

The effect of shape of the MUF  
of a sounding signal on the accuracy  
of estimation of the matrix response 

function of a SDNO 
 

To qualitatively estimate the effect of the shape 
of the MUF of a sounding signal on the accuracy of 

measuring the MRF, computer simulation of the 
algorithm for measuring MRF was performed (see 
Eq. (9) and Fig. 1). Simulation was carried out using 
the MathCAD software package. A set of N 

independent elementary (point) spatially distributed 
reflectors with different radial velocities of motion V 
relative the transmitting-receiving device (antenna) 

and different polarization properties set by the 

backscattering phase matrix of the ith elementary 
reflector of the SDNO model was taken as the model 
of the SDNO. The matrix response function of the 
model of the SDNO was described by the formula 
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 (11) 

where 0( )iεF  and 0( )iθR  are the unitary operators, whose 

product determines the operator 0 0( , ) ( ) ( )i i
ε θ = ε ⋅ θL F R  

of transformation of the coordinate system of 
description of the backscattering phase matrix of the 
ith elementary reflector in passing from its polarization 
eigenvector basis to the Cartesian basis1; δ(τi, Ωi)  

is delta-function set at the point with coordinates τi 
on the plane “delay time – Doppler shift”, Ωi (“∼” is 
the symbol of transposition); Φ(τ′, Ω′) is the two-
dimensional smoothing function determining the 

correlation of the neighbor reflectors of the model 
(two-dimensional Gaussian function with the peak 
width on the time axis being Δτ′ = 2 ns and on the 
frequency axis ΔΩ′ = 50 kHz). 

Distributions of the values of the distance Di, 

radial velocity Vi, eigenvalues 1(2)
i

λ�  of the backscattering 

phase matrix, angles of ellipticity ε 0
i
, and orientation 

θ 0
i
 of the polarization eigenvector basis for each of the 

elementary reflectors of the model were set by 

independent random number generators with the known 

distribution laws. The parameters of the distributions 

of the aforementioned values were selected so that the 
main volume of the two-dimensional function of the 
MRF norm is located in the limited area on the plane 
“delay time – Doppler shift”. The shape of the MRF 
of the model and its position on the plane [τ, Ω] are 
presented in Fig. 2. 

In modeling three kinds of vector signals were used 

as sounding signals: noise-like phase-code-modulated 

(PCM) signals, chirp signals, and simple signal with a 

unity bandwidth duration product (N = Δfsτs). 
The matrix functions of uncertainty of such vector 

signals have qualitative differences in the form. 
Durations of PCM and chirp signals are identical and 
are equal to τp = 20 ⋅ 10–6 s, the bandwidth duration 
products are equal to N = 104. With such parameters, 
the cross section widths of the main peak of their 
uncertainty function along the axes of the frequency 
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shift and time delay are equal to 50 kHz and 2 ns,  
respectively, and the spectrum width is 
Δfs > 500 MHz. The duration of simple signal was 
also taken equal to 2 ns. 
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Fig. 2. Shape of the MRF norm of the model of spatially 
distributed object. 

 

Thus, we have chosen, for modeling, the signals 
having equal frequency bands Δfs > 500 MHz while 
qualitatively different uncertainty functions (the shapes 
of UF of the selected signals can be found, for example, 
in Ref. 6). The vector PCM signal was formed using 

two orthogonal m-sequences of the length N = 105
 + 1. 

The vector chirp signal was formed using two radio  
 

signals with counter directed linear change of frequency1 
relative to the common central point of the spectrum. 
  The results of simulation of the algorithm for 
estimation of MRF of the model of a SDNO (see Fig. 1) 
using the aforementioned sounding signals are shown 
in Fig. 3. 

The results are presented in the form of two-
dimensional functions on the plane “delay time – 
Doppler shift”, gradations of gray scale represent the 
amplitude of the function. 

Black color corresponds to the maximum value 
of the function marked by the corresponding figure. 
White color corresponds to the zero value of the 
shown function. The amplitude scale is transformed 
to gray scale according to linear law. 

The forms of the absolute value of the element 

11( , )G τ Ω�

 and the norm || ( , ) ||Σ τ ΩG  of the model MRF, 

respectively, are shown in Figs. 3a and e for making a 
comparison of the initial MRF and its estimates 

obtained. 
The shape of the obtained estimates of the absolute 

value of the element 11( , )G τ Ω�  and the absolute value 

of the norm || ( , ) ||Σ τ ΩG  of MRF in using the PCM 

sounding signal are shown in Figs. 3b and f. 
Similar results obtained in using the chirp 

sounding signal are shown in Figs. 3c and g, and  
that using simple signal are shown in Figs. 3d and h. 
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Fig. 3. Initial MRF of spatially distributed object and its estimates for different kinds of signal: absolute value of the element 

11( , )G τ Ω�  of MRF of the SDNO model (a); norm of MRF of the SDNO model (e); estimate of the element 
11( , )G τ Ω�  for FCM 

signal (b); estimate of the norm of MRF for FCM-signal (f); estimate of the element 
11( , )G τ Ω�  for LFM-signal (c); estimate of 

the norm of MRF for LFM-signal (g); estimate of the element 
11( , )G τ Ω�  for “simple” signal (d); estimate of the norm of MRF 

for “simple” signal (h). 
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As follows from the results shown in Fig. 3, the most 
accurate estimate of the MRF shape of the model is 
formed while using the PCM sounding signal. 

In all other cases, it is practically impossible to 
obtain the data on the joint distribution of the 

velocities and the distances to the elementary 
reflectors, the ensemble of which forms the spatially 
distributed temporally non-stationary object. 

Quantitative characteristics of the accuracy of 
estimates of the MRF of a SDNO were obtained by 
calculating the deviations of the formed estimates, 
normalized by the amplitude, from the initial one, 
also normalized. 

The value of the following functional was taken 
as the integral measure of the error: 

 { ( , );d ΣΛ = τ ΩG ˆ ( , )} =Σ τ ΩG  

 
ˆ

ˆ|| || || ||0

1 ( , ) ( , )
= – d d ,

( , ) 3( , )V

+∞

Σ Σ

−∞ Σ Σ

τ Ω τ Ω π
τ Ω

τ Ω τ Ω

∫∫ G G

G G
 (12) 

which determines the volume of the difference of the 

normalized MRF of the model ( , )Σ τ ΩG  and its 

normalized estimate ˆ ( , ).Σ τ ΩG  The value V0 is equal 

to the volume of the normalized MRF of the model 
of the object. 

The results obtained are the following: for the 
PCM signal: Λ = 0.043 (4.3%); for a chirp signal 
0.76 (76%); and for simple signal 0.52 (52%). 

To illustrate the amplitude deviations of the 

formed estimates from the initial MRF of the model 
of the object, the cross section of the obtained 
estimates and the initial MRF of the model of the 
object are shown in Fig. 4. The coordinates of the cross 
section planes are shown in Fig. 3e by dotted lines. 

 

Conclusions 

 

Comparative analysis of the calculated data 
makes it possible to draw the following conclusions. 
Correct joint estimation of coordinates and velocities 
as well as of the full reflectivity of spatially distributed 
non-stationary objects requires that certain 

requirements to the shape of the uncertainty function 
of the sound signal be met in the measurement system. 
In an active radar system (both optical and radio-
wave), the uncertainty function of the sounding signal 
appears as the instrumental function of the device, 
the peculiar hypothetical “window”, through which 

the response function of the spatially distributed non-
stationary object is viewed. In the frameworks of such 
an approach, the fact becomes almost clear, that 

complex signals, the uncertainty function of which has 

symmetrical, “needle” form, enable one to minimize 
the instrumental error in estimating the response 

function of the object sounded. 
The results obtained can be useful for analysis of 

polarization parameters and the full specific 

reflectivity of real SDNO, for example, meteorological 

objects or vortex formations in the atmosphere at 
lidar sensing using complex signals, which would 
enable one to essentially increase the power potential 
of the system. 
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Fig. 4. Cross sections of the envelope of normalized MRF of 
the model (curve 1) and of the normalized estimates of 
MRF formed while using PCM-signal (2), chirp-signal (3), 
and simple signal (4). 
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