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The semiempirical turbulent diffusion equation is widely used in simulating the spread of 

atmospheric admixtures. However, the determination of concentrations of the admixtures at long 
distances from sources by use of the semiempirical equation is incorrect. Earlier, it was shown that 
the semiempirical equation could be used for describing the finite-rate diffusion at mobile boundaries, 
determined by the maximum values of the medium velocity pulsations, under certain limitation on 
the time of the admixture spread. The three-dimensional problem of determining the boundary of the 
region, within which the atmospheric admixtures spread is considered. 

 

The semiempirical turbulent diffusion equation1 is 

widely used for simulating the spread of atmospheric 
admixtures. Because of the first derivative with respect 
to time, it is referred to parabolic equations. As a 
result, its solutions have the property of “unlimited” 
spread rate. In other words, small but finite values  
of the mathematical expectation of the admixture 

concentration appear in equation solutions in an 

arbitrary short time after source initiation at arbitrary 
long distances from the source. This evidently contradicts 
finiteness of the speed of the admixture particles 

motion. Therefore, determination of concentrations of 
atmospheric admixtures by use of the semiempirical 
equation is incorrect at long distances from sources. 
  Attempts to overcome this limitation by changing 
a parabolic equation for a hyperbolic one are known. 
Such a model of the diffusion for one-dimensional case 
is described, e.g., in Ref. 1. Nevertheless, these results 
are impossible to be generalized to the case of an 
admixture diffusion in the three-dimensional space. 
This fact has been analyzed in detail in Ref. 2 based on 
the fundamental properties of the hyperbolic equations. 
  The one-dimensional boundary problem with the 
property of finite spread rate of admixtures was 
formulated and solved in Ref. 3 using natural 
assumption of finite extrema of the wind speed 
pulsations as well as the apparatus of the theory of 
Markovian processes. It was shown that if the spread 
time T is much longer than the time scale τ0 ≈ 18K/U2, 
where K and U are typical values of the coefficient  
of turbulent diffusion and wind speed, the standard 
semiempirical turbulent diffusion equation can be 
used to describe the process of turbulent diffusion of 
atmospheric admixtures with a finite spread rate. In 
this case, the boundary condition is to be set at the 
mobile boundaries defined by the extremum values of 
the wind speed pulsations. 

The above-indicated time limitation yields the 
estimation τ0 ≈ 2 s at the values K ≈ 5 m2/s and 
U ≈ 7 m/s, typical for the ground layer. This 
estimate corresponds to the applicability condition of 

the semiempirical turbulent diffusion equation, 
according to which the spread time of atmospheric 
admixtures is to be much longer than the Lagrangian 

time scale of wind speed pulsations τ, since in the 

ground layer the Lagrangian scale reaches the magnitude 
of tens of seconds. In alternative case, the approach 

described in Ref. 4 can be used to describe the spread 
of atmospheric admixtures at short spread times. 
  According to Ref. 3, one-dimensional case requires 
the boundary condition for a homogeneous problem and 
a source, located at the point x0 and fully emitting 
an admixture at the time t0, to be set at the moving 
boundary defined by the equations  
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where χ1 and χ2 are the left-hand and right-hand 
boundary of the diffusion region, respectively, U  is 
the average wind speed, ˆU  is the instantaneous wind 
speed pulsation. 

In this paper we consider the three-dimensional 
problem of determining the boundary of the region, 
within which atmospheric admixtures spread. The 

solution of this problem allows one to solve the 
semiempirical equation of turbulent diffusion with 
finite spread rate using the approach described in Ref. 3. 
  In deriving the semiempirical equation the 

averaging of the law of conservation of the amount of 
matter in moving medium over the period much 
longer than the Lagrangian scale of the medium speed 
pulsations1

 is used. Hence, the semiempirical equation 
describes the motion of an ensemble of “liquid” 
particles with independent increments of coordinates 
in nonoverlapping time intervals.5 Using this feature, 
define the boundary of a spreading admixture cloud 
by the method of statistical modeling. 
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The increments of coordinates of a liquid particle 
in a short time dt are defined by the equations 

 d ( iix U=  + 

ˆ )iU dt; xi = x, y, z, 

where iU  and ˆ

iU  are the components of the medium 
velocity averaged over the statistical ensemble and the 

instantaneous velocity pulsations, respectively. The 
increment of a coordinate of a liquid particle in the 
finite-time step Δt is as follows: 
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If the time step Δt is much longer than the 
Lagrangian time scale τ, the variance of the coordinate 
increment is defined by the equation6 

 2 2 ,i iK tσ = Δ  

where Ki are the components of the tensor of 
diffusion coefficients used in solving the semiempirical 
turbulent diffusion equation. Values of Ki are defined 
by the corresponding variances of pulsations of the 
wind velocity components.6 It is known, that the 
distribution function of pulsations of the wind velocity 
components can be approximated by normal law.7 
Therefore, the final expression for the coordinate 
increment of a liquid particle in the time Δt has the form 
 

 ,ii i ix U tΔ = Δ + α σ  

where αi are the random normally distributed numbers 
with zero mean and unit variance. Let us limit the 
span of pulsations of the wind velocity components 
by three standard deviations. To simulate αi, we shall 
use the truncated normal law: 
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where F(αi) is the αi distribution function, erf is the 
probability integral. 

Thus obtained relations for coordinate increments 
of liquid particles in the time Δt provide for the 
statistical simulation of an admixture cloud boundary. 
In this case, extrema of the pulsations of wind 
velocity components agree with the input parameters 
of the semiempirical equation, i.e., turbulent diffusion 
coefficients. 

To obtain the trajectory of a liquid particle, it is 
necessary and sufficient to have statistically 

independent sequences of three random numbers ri 
equidistributed over the range from 0 to 1. By solving 
the equation ri = F(αi), one can find αi values. The 
coordinates of all liquid particles from the ensemble 

calculated by the above-described technique at the 
time t define the boundary of the admixture cloud, 
which corresponds to the solution of the semiempirical 
equation of turbulent diffusion with a finite spread rate. 
  In the case of the admixture diffusion from an 
instant point source in the absence of admixture 

transfer by the averaged wind field, = 0,iU  and 

Ki = const, the surfaces of equal concentrations in the 
solution of the semiempirical turbulent diffusion 
equation are to be a family of ellipsoids 
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with the axes Ai. Because of the symmetry properties 
of the problem and the above arguments, the 
boundaries of the cloud of a spreading admixture in 
this case also have the ellipsoid shape with the axes 

3 2 .i iA K t= Δ  

Consider the problem of admixture diffusion 

under condition of nonuniform landscape. Let a source 
be located in the left-bank part of Novosibirsk at the 
point x = 5 km, y = 11 km, z = 100 m (Fig. 1), and 
emits to the atmosphere N = 1010 particles of a 

nonsettling admixture at the time t0 = 0. 
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Fig. 1. Calculation area and concentration isolines. The 
source is marked by the cross. 

 

Different scales of gray correspond to various 
types of the landscape, i.e., buildings with different 
number of storeys, forestry, steppe, Ob river, etc. 
The x-axis is directed horizontally eastward, y-axis is 
perpendicular to it directed northward in the 
horizontal-plane while z-axis comes upright. The 
calculation area is covered by a uniform rectangular 
grid of 84×72 cells with the 250-m horizontal step 
and 30 cells with the 50-m vertical step.  

The weather conditions were preset typical for 
15:00 of local time of a July day with the westerly 
wind of 5 m/s at the height of the weather vane 
mounted at the weather site in Ogurtsovo village on 
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the left bank of Ob river. Fields of average values of 
wind velocity components and temperature were 

determined with a digital-analytical model.8 The 

components of the tensor of turbulent diffusion 

coefficients were obtained using an algebraic model 
similar to that in Ref. 9. In this model, the components 
are expressed in terms of universal functions of the 
dimensionless stability criterion, i.e., the gradient 
Richardson number defined by the fields of average 
wind speed and temperature. 

Consider the algorithm for particle trajectory 
simulation. For each trajectory of the particle 

ensemble, emitted by the source, coordinate increments 
were determined at the n + 1 Δt-time step. In so doing 

the values 
n

iU  and 
n

iK  were determined at each step 

by means of the linear interpolation over 8 nodes of 
the computational grid, which surround the current 
coordinate of a particle. Sequences of independent 
pseudorandom numbers equidistributed over the range 
from 0 to 1 were generated by the residue method10: 
 

 rk+1 = {Mrk}, r0 = 2–m, 

where M is sufficiently large integer; m is the 
number of bits in the mantissa of memory cells. The 
period of such sequences equals to 2m–2. It is about 
109 for standard 32-bit processors. The subprogram 
DRAND11 from the function library of the Compaq 
Visual FORTRAN package, version 6.5 was used to 
generate random numbers. Average values and 

variances of random sequences satisfied the condition 
of standard uniform distribution for random numbers 

within the range from 0 to 1: ir  = 0.5 and 2

riσ  = 1/12 

accurate to better than 10–5. Correlation coefficients 
of pairs of the random sequences used differed from 
zero by less than 10–6. 

If z-coordinate at the n + 1 time step was below 
the level of underlying surface, the passage to the 
next ensemble trajectory simulation was performed 
and the particle was considered absorbed by the 
underlying surface. The procedure was the same in 
the case when the coordinates obtained at the n + 1 
time step exceeded the side and top boundaries of the 
preset rectangular area. After determining the set of 
coordinates of the whole particle ensemble at the time 

t, cells of the calculation rectangular area, which 
contains at least one particle, were defined. Such 
cells were marked by unity. Empty cells were marked 
by zero. Thus, a domain determining the boundary of 
the cloud of a spreading admixture was distinguished 
inside the calculation rectangular area. 

The program for calculating the cloud boundary 
was tested with an example of admixture diffusion in 
the uniform field of wind velocity and at constant 

turbulent diffusion coefficients iU =  const and 

Ki = const. The calculations gave the cloud boundary 
in the form of an ellipsoid, the axes of which coincided 

with the theoretical values 3 2i iA K t= Δ  accurate to 

one step of the calculation chart. 

Figure 2 shows an example of the cloud boundary 
obtained for t = 800 s in the horizontal cross section 
z = 50 m for admixture diffusion over Novosibirsk. 
The considered ensemble consisted of 8 ⋅ 104

 particles. 
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Fig. 2. Cloud boundary in z = 50 m cross section at 
t = 800 s (bold line); the cross denotes the source. 

 

Calculations have shown that the double and 
greater increase of the number of ensemble particles 
for this example does not result in any significant 
change of the air admixture cloud boundary. 
Concentration isolines for this example have been 
obtained by the numerical solution of the turbulent 
diffusion equation (see Fig. 1). Concentration values 
of the given isolines correspond to 2.5, 2.0, 1.5, and 

1.0 m–3 and decrease toward the boundary of the 
calculated domain. The set of admixture concentration 
isolines shown coincides in its characteristic sizes 
with the boundary obtained by the method of 
statistical modeling. 

Thus, general view of the cloud boundary and 
concentration isolines are not totally similar while an 
admixture diffusing in nonuniform medium in contrast 
to the case of diffusion in a uniform field of wind 
velocity and at constant values of turbulent diffusion 
coefficients. Probably, reasons for this are the 
thermal inhomogeneity of the underlying surface and 
a complicated nonuniform landscape. Note, that out 
of the obtained cloud boundary there is large amount 
of the admixture in the solutions of the semiempirical 
equation, which cannot be reliable due to finite spread 
rate of particles. In particular, according to the 
solution of the semiempirical equation, more than 
50% of the admixture is out of the cloud boundary, 
determined by the method of statistical modeling, at 
the time t = 800 s. Also note, that less than 3% of 
the admixture is out of the cloud boundary in the 
case of admixture diffusion in the uniform field of 
wind velocity and at constant values of the turbulent 
diffusion coefficients. 

The considered approach is relevant in simulating 
the spread of air admixtures to short distances from a 
source when describing variations of concentration 
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fields of air admixtures, including cases of complicated 
nonuniform landscape. 
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