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The fundamentals of the theory of optical monitoring of the surface boundary layer, 
performed for purposes of real-time remote sensing of the dynamical characteristics of the 
layer and subsequent solution of ecological problems of predicting pollutant transport, are 
presented. In particular, methods for solving the atmospheric-optical problem of 
constructing the field of the turbulent diffusion coefficients of aerosols from data 
obtained by laser sounding based on the scattering of light by the aerosol are discussed. 
The structure of the algorithm for determining the spatial-temporal variability of the 
aerosol microstructure field from optical measurements and for studying the physical 
processes involving aerosols under the conditions of a real atmosphere is given. 

 
 

The spatial and temporal variability of the optical 
characteristics of aerosol in the atmosphere is 
determined by the diffusion transport of aerosol matter 
and transformation of the particle-size spectrum. 
Because of this situation remote sensing of aerosols 
based on the scattering of light can yield information 
about physical processes involving aerosols under 
conditions of the real atmosphere. This paper is 
devoted to the theory of such optical monitoring of the 
atmosphere performed for the purposes of studying the 
dynamics of the boundary layer. Knowing the 
dynamical parameters of the boundary layer it is 
possible to solve prediction problems associated with 
the emission of dispersed and gaseous pollutants into 
the atmosphere. 
 

THE EQUATION OF ATMOSPHERIC 
DIFFUSION AND FORMULATION OF  

INVERSE PROBLEMS 
 

The solution of the problem of predicting the 
transport of dispersed pollutants in the boundary layer 
usually involves the equation of atmospheric diffusion, 
which can be written in its general form as follows: 
 

 (1) 
 

where ( , )Q z t


 is the concentration of transported 
pollutants (aerosols). Equation (1) contains, aside 
from the indicated function, the vector field of the 
wind velocity u


 and the field of the turbulent 

diffusion coefficient .D


 
The existing instrumentation for remote optical 

sounding of the atmosphere1 as well as the 
computational methods for interpretation of the 
corresponding optical data2,3 permit determining the 

concentration field of aerosol particles ( , )Q z t


 and 

the vector field ( , )u z t
 

 with accuracy that is 
acceptable for many practical applications. This fact, 
naturally, leads us to formulation of a mathematical 
problem for Eq. (1) whose solution is the vector 
field of the diffusion coefficient ( , ).D z t

 
 The 

practical significance of this is as follows. If the 
vector fields u


 and D


 are known at some moment 

in time, say, t, within some local region of the 
boundary layer, then by solving the so-called direct 
problem for Eq. (1) for the scalar field Q(z, t), it is 
possible to predict the spreading of the pollutants at 
times t > t. Prediction problems of this type 
constitute the principle content of what is 
customarily regarded as ecological monitoring of the 
environments.5 The investigation being conducted in 
this field are primarily oriented toward constructing 
some semiempirical a priori models for the vector 
fields u


 and D


 (Ref. 6). 

The material in this article relies on the methods 
and instruments employed for optical monitoring and 
is based on the concept that reliable prediction of the 
ecological situation can be based solely on data from 
real-time remote sensing of the dynamical 
characteristics of the atmosphere. The basic theoretical 
aspects connected with the realization of this concept 
in the form of a computational theory of interpretation 
of empirical data are presented below. 

In solving the diffusion equation (1) for the scalar 
field ( , ),Q z t


 the equation is usually reduced to a 

system of equations of the form 
 

 (2) 
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The choice of constants is usually conforms to the 
choice of scale factors, and without loss of generality 
they can be set equal to zero (see Ref. 7). The system 
(2) is constructed based on the so-called method of 
separation, applied in this case to Eq. (1).5 This 
method makes it much easier to solve the direct 
problem, i.e., the calculation of the field ( , ).Q z t


 In 

determining the field ( , )D z t
 

 the method is 
essentially equivalent to the separating Eq. (1) into 
partial equations for the unknown components 
D1 = Dx, D2 = Dy, and D3 = Dz. Equations (2) are 
integrated in quadratures, and the computational 
aspects of this problem need not be discussed. The 
algorithmic apparatus that was developed for solving 
Eq. (1) for ( , ),Q z t


 can also be used to find the field 

( , ).D z t
 

 It is not difficult to show that the operator 

converting the set of initial data {Q, Qt, Q} into the 
vector D


 is completely continuous and bounded 

(these questions are discussed in part in Ref. 8). Thus 
from the algorithmic viewpoint, the problem of 
determining the components of the field D


 from 

Eq. (1) is virtually indistinguishable from the 
solution for the function ( , ).Q z t


 The separation into 

the direct and inverse problems here is more than 
symbolic, since these problems can be solved with the 
help of the same software, and, in particular, the 
software described in detail in Ref. 7. 

It should be noted that to solve many practical 
ecological-monitoring problems it is sufficient to study 
simpler methods for determining the field of the 
turbulent diffusion coefficients. Thus in accordance 
with Ref. 6, instead of Eq. (1), a simplified version of 
this equation can be studied, namely, 
 

 (3) 
 

Moreover it can be assumed that Dx  Dy for altitudes 
of z > h, where h is the surface boundary layer. Then 
we can write Eq. (3) in the form 
 

 (4) 
 

where 1 ya Q  and 2 za Q  and we denote by f the 

sun of remaining terms appearing in Eq. 3. Equation 
(4) can be further simplified by taking into account the 
fact that the z dependence of the function Dx(x, y, z) 
can be approximated by a power-law function. A 
complete discussion of physically well-founded 
boundary conditions on the components of the field D


 

is given in Ref. 6. Mathematically it is much more 
difficult to solve the problem of determining the scalar 
field ( , ),Q z t


 its time derivative t,Q  and the gradient 

Q from data obtained by optical monitoring of the 
scattering component of the atmosphere. Methods for 
solving this problem are presented below. 
 
 
 

THE THEORY OF OPTICAL MONITORING  
OF SPACE-TIME VARIABILITY  

OF THE MICROSTRUCTURE FIELD OF 
AEROSOL FORMATIONS IN THE ATMOSPHERE 
 

It is convenient to start the analysis from an 
estimate of the field ( , )Q z t


 from lidar data on 

aerosols in the boundary layer. The reason for starting 
the discussion with the method of laser sounding will 
be explained below, but for the time being we merely 
point out that Q(z, t) is the concentration of particles 
whose sizes fall into the interval [R1, R2]. In the 
process of laser sounding the optical signal received 
from the atmosphere ( , , )P z t 


 is directly 

proportional to the backscattering coefficient 
( , , ).z t 


 If the aerosols microstructure in a local 
volume is characterized by the distribution function of 
the particle volume over the particle size v(r), then the 
backscattering coefficient can be written as follows: 
 

 (5) 
 
where K is a corresponding factor and m is the 
refractive index of the aerosol material. 

In the problems of aerosol transport it is 
reasonable to assume ( ) const,m z 


 if, of course, over 

the period of optical monitoring there is not enough 
time for their chemical composition to change. Then 
the measured optical characteristic in the region 
sounded can be represented as a product v( ) ( ),V z K 


 

where ( )V z


 is the integral of the density ( , )v r z


 over 

the variable r within the indicated limits and v( )K   
is some average value of the factor in the integral (5). 
The assumption that the factor v( )K   does not 
depend on the spatial coordinates makes it possible to 
regard it below as a constant whose value must be 
chosen a priori in an appropriate manner, after which 
the volume concentration field ( )V z


 is found from the 

lidar measurements of ( , ).z 


 Turning to Eqs. (2) it 

is not difficult to see that Q(z) can be replaced not 
only by the volume concentration ( )V z


 but also 

directly by the field of the optical characteristic 
( , ),z 


 since under the assumption adopted above 

    
 

v( , , ) ( , ) ( ).z t V z t K  How the not very 

trivial problem of determining t  and  is to be 
solved will be described below. Thus we have shown 
that in the simplest interpretation the optical data 
from laser sounding of the aerosol component can be 
employed directly to invert the atmospheric diffusion 
equation in order to find the field ( , ).D z t

 
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There is nothing unexpected in this assertion, 
since the spatial-temporal variability of the 
concentration field of aerosol particles is directly 
manifested in the variations of the field of the aerosol 
optical characteristics. Of course, functionally, this 
relationship can be simple or more complicated. In this 
connection it should be noted that in the problem at 
hand the method of pulsed laser sounding has a 
significant advantage over other optical methods 
(geometric schemes). It lies in the fact that the lidar 
signal ( , , )P z t 


 received is essentially directly 

proportional to the characteristic ( , , )z t 


 and in 
this sense the lidar method must be regarded as a direct 
method for determining ( , , ).z t 


 

In using different geometric schemes (path 
measurements of the spectral transmission, tangential 
sounding of the atmosphere from space, etc.) the 
determination of the optical characteristics of the 
atmosphere involves inversion of the integral radiation 
fluxes. For this reason the different optical methods of 
remote sounding must be regarded as indirect, if the 
problem is to determine the fields of the optical 
characteristics. This is what distinguishes the laser 
sounding method and makes it the single most 
important part of optical monitoring of the system 
"atmosphere-underlying surface", performed by the 
integrated optical instrumentation.9 

A careful analysis of the approach presented 
above for studying the dynamics of the boundary layer 
from data obtained by optical monitoring shows that it 
is of an approximate (qualitative) character. It could 
possibly satisfy all the requirements associated with 
the solution of prediction problems in ecological 
monitoring of the dispersed pollutants; nonetheless it 
is possible to construct a more informative theory of 
optical investigations of the dynamics of the boundary 
layer, having in mind primarily, as done above, the 
determination of the vector field ( , ).D z t

 
 Indeed any 

aerosol formation in the atmosphere consists of 
particles (fractions) of different sizes; this is 
characterized by the concept of aerosol 
"microstructure". In the above discussion it was 
connected with the distribution v(r). In studying 
particle transport there is no harm in studying the 
transport of separate fractions, each of which contains 
particles with sizes r from the subintervals (rl, rl+1) 
(l = 1, , m). We shall denote by l(V) the volume 
concentration of particles in the indicated fraction. It 
is obvious that if the density v(r) is known, the 
following relation is satisfied: 
 

V(r) = 

 
 

l = 1, , m (6) 
 
If data on {l(V), (l(V))t, (l(V))} were available 
to us, then we would be able to write an entire system  
 

of equations of the type (2), each of which would 
describe the process of diffusion of the corresponding 
fraction. In order that this procedure for interpreting the 
microstructural data be of practical value strong 
physical foundations are required. One such foundation 
is that the turbulent diffusion coefficients of the 
particles depend strongly on the particle size. According 
to existing data,10 as the particle size r increases from 0. 
1 to 10 m the coefficients Dl change by three orders of 
magnitude. For this reason, strictly speaking, we must 
consider the parametric field ( , , )D z t r

 
 in the starting 

equation (1). From the physical and mathematical 
viewpoints it is also important that the field u


 is in no 

way connected with the parameter r and appears in 
Eq. (1) as an external factor. For this reason Eq. (1) 
can be regarded as a functional equation relating the 
partial distributions ( , )D r z t

 
 and ( , ).v r z t


 The 

interrelation of these two fields, on the basis of the 
approach studied here, forms the physical foundation for 
the study of the processes involving aerosol particle 
systems in the real atmosphere. 

In order to have the required initial data for the 
inverse problem under study the volume of optical 
measurements must be increased. If we have in mind 
only the optical sounding (monitoring) 
instrumentation then it is reasonable to employ for 
these purposes multifrequency lidars first. When the 
measurement complex contains n working frequencies 
the lidar measurements give a collection of values of 

i{ ( , , ), 1, ..., }.z t i n  


 When certain requirements, 
which will not be discussed here (see Refs. 2 and 3), 
are met this set of optical measurements can be 
converted into a set of microstructural data l{ ( , ),z t


 

l = 1, , m}. However since the lidar measurements 
must be used to perform not only microstructural 
analysis of the aerosols but also to construct the 
gradients of the field of concentration of separate 
fractions we shall present the structure of the 
algorithm which transforms the collection of lidar data 

i{ ( , , ),P z t 


 i = 1, , n} in tl l{ ( , ), ( ( , )) ,z t z t  
 

 

l( ( , ))},z t 


where l = 1, , m. We note that this 
algorithm can be used to solve not only the inverse 
problems of aerosol diffusion, but also the inverse 
problems of aerosol kinetics as a whole.8 Thus, in what 
follows we shall talk about the possibility of 
developing methods for studying physical processes in 
the atmosphere, relying on the availability of 
information obtainable in real-time by remote means. 
In order to employ this information, however, 
appropriate methods of interpretation are required. 

To simplify the presentation we shall assume that 
the sounding is performed vertically and the 
determination of the gradient of the field l( , )z t


 

reduces to determining its derivative with respect to z. 
Assuming, as done previously, that the factors in 
Eq. (5) do not depend on the spatial coordinates, we 
shall write the expression 
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 (7) 

 

or in operator form z = Ksz, where K is the integral 
operator corresponding to Eq. (7). We recall that 
s(r) = r2n(r), and we used the condition 
s(r = R1(z)) = s(r = R2(z)) = 0. As a result for any 
optical characteristic of the local volume, which 
depends on the spatial coordinate z and the time t, in 
the medium being sounded the following integral 
representation holds: 
 

 (8) 
 
These integrals are inverted with the help of the same 
regularizing operator -1

aK  (Ref. 8). Since in the 
scattering atmosphere the formation of the lidar 
response is determined by two optical characteristics 
(z, t, ) and ex(z, t, ), we shall require
below the operator W which transforms the function 
() into ex() for any optical sounding interval . 
Formally this operator is defined as 1

ex ,K K
  where 

Kex and K are integral operators with the kernels 
Kex(r, ) and K(r, ), respectively.8 Under the same 
assumptions on which Eqs. (8) are based we can write 
 

 (9) 
 
In accordance with the theory of multifrequency 
sounding of the atmosphere based on the phenomenon of 
light scattering by aerosol2,3 the first operator in 
Eqs. (9), completing the determination of the equation 
describing the transfer of lidar signals in the spectral 
interval , makes it fully determinate and uniquely 
solvable. But now we are faced with a complicated 
informational problem, since we are required to 
reconstruct from the lidar signal P(z, t, ) not only the 
field of the optical characteristics ex(z, t, ) and 
(z, t, ), but also their derivatives. It is obvious that 
additional functional equations must be introduced in 
order to solve this problem uniquely. Before doing so, 
we recall that since the lidar measurements are 
performed only for a discrete set of wavelengths {i , 
i = 1, , n} it is reasonable to put Eqs. (9) into a 
matrix form, i. e., to rewrite them from vectors, namely, 

ex Ŵ     etc. The components of these vectors are the 

values (i) (i = 1, , n). When the lidar data are 
interpreted it is convenient to introduce the normalized 
function S(z, t, ) = P(z, t, ) z2/B() P0(), 
where B() is an instrumental constant and P0() is 
the power of the generated light pulse, instead of the 
lidar signal P(z, t, ). 

Based on these remarks and starting from the lidar 
equation in single-scattering approximation we write 
the following relations: 
 

 (10) 

 
where the following notation has been employed 
i = (z, t, i), Ti = T(z, t, i) = exp{–2(z, t, i)}, 

1

z

i ex i
z

( , , ) ( , , ) .z t z t dz       Supplementing now the 

system (10) with the matrix equations of the type (9), 
we obtain a fully determined system of functional 
equations for the functions i(z, t), iz(z, t), and 
it(z, t). The functions found determine, through the 
system of operator equations (8), the field of the 
microstructure of the aerosol formation sounded and 
its space-time variability. The analytical constructions 
made above form the basis of the theory of optical 
monitoring of aerosol formations in the atmosphere, 
performed in order to monitor the space-time 
variability of the microstructure field. Analysis of the 
solvability of the equations falls outside the scope of 
this paper. We merely cite the work Ref. 2 where 
similar systems of nonlinear equations were studied in 
connection with the construction of a theory of 
multifrequency laser sounding of dispersed media. For 
practical applications the system of (9)—(10) must be 
put into a discrete form. To this end we shall make the 
system discrete in the variables z and t, by introducing 
the quantities (k )

i i k( , ),S S z z t t
    k,  = 1,  , 

as well as the corresponding vectors 
(k ) (k )

i ik{ ( , , },z t 
     


 i = 1, , ,n}. Then the 

system of functional equations (10), solved beforehand 
for (z, t, ) and its derivatives with the help of the 
relations (9), will assume the following discrete form: 
 

 
 

 
 

 
 

 
 

 (11) 
 

 
 

where (k )
i

ˆ( )W 
  denotes the quantity k( )

ex,i ,
  i.e., i-th 

component of the vector ex,


 reconstructed from the 

vector 


 with the help of nn matrix ˆ .W  In 

accordance with Eq. (8) the vector (k ) (kn)
l{ ,  


 

l = 1, , m}, characterizing the microstructure field, 
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is determined with the help of the matrix operator 
1K̂

  in the process of solving Eqs. (11). Such systems 
can be conveniently solved by iteration methods.2 The 
matrix operator Ŵ  is calculated with the help of 
Mie’s formulas. In order for the computational 
algorithm to be specified completely it remains to give 
a method for calculating the derivatives Sz and St 
from the empirical function ( , , ).S z t   
Mathematically this problem has been studied well 
and, as is well known, it is an improperly posed 
problem. Since the function ( , , )S z t  is in itself not 
differentiable, in the wider sense we are talking about 
how to construct for it a close analog that satisfies the 
required conditions that the analytic behavior be regular 
(differentiable). In application to the interpretation of 
lidar data the solution of this problem was presented 
previously in the monograph Ref. 3, so that we write 
out the final working formulas, making the system (11) 
complete in all respects. 

As a simplification we introduce the notation 
( )

lz( ) ( ).z S z   It is obvious that 
 

 
 
The function (z) is calculated in the following order: 
 

 (12) 
 

where 
 

 
 
The coefficients ck are found from the solution of the 
system 
 

 (13) 
 
in which 
 

 
 

and the right side 1k k
ˆ ( ) ( ).f S z S z    Once again  is 

the regularization parameter. It is clear that this 
sequence of calculations is based on an operator that 
transforms the empirical function ( )S z  into its 
regular component S(z), which has the required 
derivative with respect to z S(z). We recall that in 
the process of inverting the empirical data the 
regularizing algorithm simultaneously filters the noise 
(suppresses the irregular component of the empirical 
function). The algorithm constructed above solves the 
problem of writing the corresponding software for 
processing the data obtained by optical monitoring of 
the space-time variability of the aerosol microstructure 
fields, and combined with the equation of atmospheric 
diffusion (1) it gives a method for studying the 
dynamics of the surface boundary layer based on the 
scattering of light by the aerosol. 
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