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The results of model calculations of the errors in measurements of the average 
attenuation coefficient of the atmosphere owing to the variability of the scattering phase 
function g in the case when a cloud is present in the sounding path are analyzed. Three 
methods for fixing the path on which the average attenuation coefficient is measured are 
studied. It is shown that the best method for minimizing the indicated errors is to 
determine the path length from the decrease of the backscattering signal by a fixed factor. 

 
 

The solution of the lidar equation for the 
attenuation coefficient (z) for an inhomogeous 
atmosphere is an improperly posed problem, even if 
there is no absorption of the sounding radiation and in 
the single-scattering approximation, because a second 
unknown function is present – the phase-function 
parameter g(z) characterizing the backscattering. 
Information about the attenuation coefficient in 
different ranges of variation of the parameters of the 
atmosphere being sounded is extracted with the help of 
a priori assumptions about the character of the 
function g(z). Any deviation of the real dependence 
g(z) from these assumptions leads to the appearance 
of corresponding methodical errors. In addition, 
depending on wheter the deviation along the sounding 
path is distributed randomly or systematically and 
whether or not it is known beforehand, the errors will be 
random, systematic, or uneliminated systematic errors. 

Because the problem is difficult to analyze in a 
general form, in this paper the measurement errors are 
analyzed for a specific lidar, the Elektronika-03 lidar, in 
which data processing is performed by the integral 
method.1 The model of the inhomogeneous atmosphere 
and the range of variation of the atmospheric parameters 
were chosen based on the fact that this lidar is used for 
providing meteorological information for aircraft flights 
under conditions of dense haze and fog with sounding 
angles of up to 15° relative to the horizon.1,2 

To analyze systematic errors, which are larger 
than the random errors, which can be reduced by 
averaging, we shall study a model of a stationary 
atmosphere. We shall characterize the model 
atmosphere by a constant attenuation coefficient 0 in 
the layer near the ground up to an altitude of HL where 
(H) = 0exp(k(H – HL)) which corresponds to an 
increase in the attenuation coefficient in the layer 
beneath the cloud and at the lower boundary of the 
cloud. This situation, in which (H) is constant or 
increases with altitude, is the most typical situation 
for conditions of dense haze and fog,3 while an 

exponential law describes satisfactorily the increase in 
the attenuation coefficient at the lower boundary of a 
cloud.4 

In accordance with the data of Refs. 5 and 6 we 
shall employ the power-law dependence 
 

 (1) 
 
and we shall write for the model of the atmosphere 
employed here an expression for the backscattered 
signal, corrected for the square of the distance,  
in the form 
 

 
 (2) 
 

where S0 = S(z0); z0 is the distance from which the 
signal processing starts; k = k  sin3; 3 is the 
sounding angle relative to the horizon; and, zH is the 
distance along the sounding path up to the altitude HL. 

The relation between the points z0 and z1 on the 
sounding path for calculating the average attenuation 
coefficient by the integral method has the form 
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distance at which the signal drops to the noise level. 
An important part of the processing using the 

formula (3) is to determine the distance z1 at which the 
lidar measurement baseline terminates. The problem of 
determining the distance z1 automatically with the 
recording system of the lidar can be solved in three ways: 
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1) by fixing the distance z1 – z0; 
2) by fixing the ratio of the integrals in (3); and, 
3) by fixing the ratio of the amplitudes 

S(z0)/S(z1) = n = const. 
Each method has its own advantages and 

disadvantages. The instrumentation is simplest in the 
case of the first method, and the values of   obtained 
agree best with the data from photometric monitoring 
devices with a baseline of z1 – z0. The second method 
permits fixing the optical thickness of the probed layer 

0 0 1 0( , ) ( ).z z z z    In this case the range of variation 
of the integrals recorded is minimized. The difficulty 
in setting up the instrumentation in this case with 
analog signal integration, as in Ref. 1, stems from the 
need to have information about the magnitude of the 
asymptotic integral up to the moment at which z1 is 
fixed in real time. The third method for determining 
the distance z1 can be easily implemented by using a 
comparator, which records the moment at which the 
condition S(z0)/S(z1) = n is satisfied, but in this case 
the dynamic range of variation of the integrals under the 
conditions of an inhomogeneous atmosphere increases. 

The errors in measuring the average attenuation 
coefficient   on the measuring baseline chosen by one 
of the methods enumerated above were calculated 
using the formula 
 

 
 
where meas  was determined from the relation (3) by 
numerical integration of the signals from Eq. (2), 
while true  was determined from the model true 

profile (z) in the range from z0 to z1. In so doing zm 
was taken to be the distance at which the 
backscattering signal dropped to a level 250 times 
lower than S(z0). The value of zm was determined by 
solving the transcendental equation obtained from 
Eq. (2) under the assumption that S(zm)/S(z0) = 250: 
 

 
 

 (4) 
 

The quantity z1 was determined analogously for the 
fixed amplitude ratio method. In this case the quantity 
Inn on the right side of (4) was written for situations 
when  (see Fig. 1) and  for 

 
In order to use the relations (2) to calculate the 

errors the parameter k2 and the ranges of variation of 
the parameters of the three-parameter model of the 
atmosphere must be determined. 

The values of k2 ranging from 1.2 to 1.6 are 
presented in Refs. 5 and 6 for conditions of dense haze 
and fog. The value k2 = 1.3, which in our opinion is 
most likely, was employed in the calculations. 

The parameters of the model atmosphere were 
chosen as follows. The range of values of the 
attenuation coefficient was chosen to correspond to 
dense haze and tenuous fog at the earth’s surface: 
0.5 km–1  0  3 km–l. The distance zH was chosen 
to be  0.1 km, which for sounding angles for the 
Elektronika-03 lidar ranging from 0 to 15° corresponds 
to HL ranged from practically zero to altitudes at 
which, owing to the high optical density of the layer 
near the ground, clouds have no effect on the 
measurements. For the indicated sounding angles, 
based on the date from Ref. 4, according to which k 
ranges from 0 to 60 km–1 the range of k was chosen to 
be 0 to 15 km–1. The values of the ratios of the 
integrals and signals for which the distance z1 was 
fixed were set equal to 10. 
 

 
 
FIG. 1. The backscattered signal S as a function 
of the distance to the scattering volume z: z > zH; 
(a) and z < zH (b). 

 
The errors in measuring the attenuation 

coefficient were calculated for the entire indicated 
three-dimensional region of parameters of the model 
atmosphere. Figures 2–4 show sections of surfaces of 
15% error, which can be regarded as the maximum 
admissable error for the Elektronika-03 lidar, 
assuming that the error under study is the dominant 
error (the total measurement error of this lidar should 
not exceed 25%). With the exception of curve 5 in 
Fig. 2, the curves presented correspond to errors 

15%,    which is due to the "large" contribution of 
clouds to the scattered signal owing to the increase in 
g(z). As a result, in the expression (3), derived under 
the assumption that the so-called average integral 
scattering functions on the sections where the integrals 
are calculated are equal,7 the value of I1 Is higher than 
the true value to a much greater degree than Im. This 
results in the fact that the ratio of the Integrals and 
correspondingly the average attenuation coefficient 
are underestimated. This effect is all the larger the 
lower the value of 0 (the more transparent the 
atmosphere near the ground) and the higher the value 
of k (the higher the rate of growth of  as the depth of 
penetration into the cloud increases). Therefore in the 
figures the regions of the parameters 0 and k below  
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and to the right of the curves correspond to even larger 
errors. In this case the problem consists of minimizing 
in the space of likely parameters of the model 
atmosphere the region with errors above a given level. 
 

 
 
FIG. 2. Sections of surfaces of constant error 
   15%  by the planes zH = const in the 

coordinates k and 0. z1 is fixed. 15%    
(14.69), +15% (5); z1 = 0.8 km (15), 1.2 
(69); zH = 0.8 km (1, 5, 6), 1.2 (2, 7), 1.6 km 
(3, 8), and 2 (4, 9). 

 
To describe the degree of inhomogeneity of the 

atmosphere in this model it is convenient to 
introduce a parameter characterizing the degree of 
inhomogeneity k/20, which fixes the angular 
position of the straight lines passing through the 
origin of coordinates in the figures (dashed lines). It 
is obvious from the figures that the characteristics of 
the signal from the cloud, such as the relative 
amplitude and the position of the maximum relative 
to zH, depend on the values of the parameter k/20. 
The computational results can be compared with the 
help of this parameter, if it is assumed that the 
greater the inhomogeneity of the atmosphere, in 
which the errors do not exceed a fixed level, the 
better the result is. 

From the viewpoint of this criterion the results 
presented in Fig. 2 for negative error, equal to –15%, 
and the values of z1 (0.8 and 1.2 km) differ 
insignificantly (k/20 = 1.45 and 1.25, 
respectively). However for a baseline 1.2 km the 
figure contains explicitly a deficiency characteristic 
for the case when z1 is fixed – the boundary effect 
becomes significant as ( )z  decreases, when the 
value of zm approaches z1 and therefore I1 is 
determined with lower accuracy. This results in 
overestimation of meas  and in the appearance of a 
region ofpositive errors exceeding 15%, relative to 
curve 5. In this case the absolute value of   can 
exceed the fixed level even in a homogeneous 
atmosphere (k = 0). 

The results presented in Fig. 3 are preferable. 
Here the limiting value of k/20 is 1.75, and the 
"boundary effect" is negligible. 

 

 
 
FIG. 3. Sections of the surface of constant error 
   15%  by planes zH = const in the 

coordinates k and 0. The ratio of the integrals is 
fixed. zH = 0.8 km (1), 1.2 (2), 1.6 (3), and 2 (4). 

 

 
 

FIG. 4. Sections of the surface of constant error 
   15%  by the planes zH = const in the 

coordinates k and 0. The amplitude ratio is fixed. 
zH = 0.8 km (1), 1.2 (2), 1.6 (3), and 2 (4). 

 
The results presented in Fig. 4 are of greatest 

interest. Here the parameter k/20, equal to 3.5, has 
the highest value of the three cases studied. In addition 
the upper parts of the graphs (upto cutoff) are close 
to the corresponding graphs in Fig. 3, since in this case 
z1 is recorded on the starting section of the signal from 
a homogeneous atmosphere, and the effect of the signal 
from the cloud is relatively small. Therefore in a 
completely homogeneous atmosphere for these two 
cases z1 will be the same. The break in the graphs is 
caused by the jump-like increase in z1 (increasing 
penetration into the cloud), when S(zH) becomes greater 
than S(z0)/n. As a result the range of near the maximum 
of the pulse from the cloud is not realized, and the error 
under study is maximum precisely for this range. 

Thus from the .viewpoint of increasing  
the probability of measurements with a fixed error 
owing to the variability of the phase function 
parameter g, the preferred method is to implement 
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in the lidar the integral method with the measuring  
 

baseline fixed according to a decrease of the scattering 
signal by a fixed factor. 
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