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The errors in determining the temperature of the ocean surface (TOS) from remote 
measurements of IR emission at two angles relative to the vertical owing to the statistical 
variability of the altitude profiles of the atmospheric temperature and humidity are 
analyzed based on model calculations. The optimal coefficients and the corresponding 
errors in determining the TOS in the linear algorithm of atmospheric correction, 
demonstrating that they are highly variable, are determined in the approximation of an 
absolutely black surface and a cloud- and aerosol-free atmosphere for different regions in 
the northern hemisphere. The effect of errors in the radiation measurements is studied. 

 
 

One of the promising method for the remote 
determination of the temperature of the ocean surface 
(TOS) is based on measurements of the infrared 
radiation at different angles relative to the vertical. A 
two-angle measurement scheme was first studied in 
order to make corrections for absorption of radiation 
by water vapor in the atmosphere.1,2 Later aerosols and 
the dependence of the emissivity of the sea surface on 
the sea state were included among the factors taken 
into account and measurements at three and more 
angles became of interest.3–6 

Infrared radiation in the "ocean-atmosphere" 
system (SOA) in the transmission windows depends on 
a number of factors including the vertical profiles of 
the temperature and humidity, so that the best 
approach to the analysis of the atmospheric effects is to 
use the general principles of the solution of the inverse 
problems of thermal sounding,7 based on the use of 
statistical data on the variability of the atmosphere. 
However this approach is not widely employed for 
investigating the problem of determining the TOS. For 
spectral multichannel measurements it is 
implemented, for example, in Ref. 8. In this paper the 
two-angle method of atmospheric correction is studied 
based on the same assumptions. In so doing, in order to 
separate most clearly the effects associated with the 
effect of atmospheric temperature and water-vapor 
profiles, other interfering factors are not included in 
the radiation model employed. 

For the ocean region selected approximate 
values of the TOS T(0) and vertical profiles of the 
atmospheric parameters can be given at each moment 
in time. Using a finite-dimensional approximation 
for the atmospheric profiles, we denote by (0)x


 the 

approximate values of the temperature and humidity 

at N altitudes (here (0)x


 is a 2N-dimenslonal 
vector). Assuming that at an arbitrary altitude the 
values of these parameters are determined uniquely 
by a fixed interpolation from the starting levels, the 
measured radiation temperatures rT


 can be assumed 

to be a function of the quantities T and :x


 

r r ( , ).T T T x
  

 According to the stated goal of this 

work rT


 is assumed to be a two-dimensional vector, 
whose components describe the measurements at  
two angles. The real values of the TOS T and  
the vector ,x


 describing the state of the atmosphere, 

differ from the reference values and are given  
by T = T(0) + T and (0) .x x x  

  
 The 

corresponding vector of measurements is 
(0)

r r p.T T T  
  

 

Approximate calculations showed that for real 
variations of T and x


 a local linear approximation 

of the function r r ( , )T T T x
 

 was valid to a high 
degree of accuracy: 
 

 (1) 
 
where a is the two-dimensional vector with the 
components a1 and a2, and x1 is the i-th component of 
the vector l .x


 

This relation can be regarded as a system of 
linear equations, one unknown in which is T. For 
this reason it is natural to express the solution of this 
system in the linear form p

ˆ ( , )T T  


 or in the more 
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general form 0 p
ˆ ( , )T T   


 (the parentheses 

indicate a scalar product); T̂  and T̂  denote the 
results of the determination of the TOS from remote 
sensing data and T = T(0) + T. The error In 
determining the TOS from these formulas is: 
 

 (2) 
 
It can differ from zero owing to the fact that the 
number of unknowns (T and xi) in the system of 
equations (1) Is greater than the number of equations 
as well as because of the fact that the coefficients 0 
and  ( is a vector whose components are 1 and 2) 
are probably not known adequately. 

The dependence of the radiation temperature of 
the SOA on the TOS and the parameters of the 
atmosphere Is nonlinear, so that the derivatives (T 
and xi) entering the expressions (1) and (2), like 
also the quantities (0)

r ,T


 should depend on the 

reference states of the TOS (0)T


 and the atmosphere 
(0).x


 Therefore the optimal values of 0 and 


 it 
which give the smallest errors in determining the 
TOS must be determined, generally speaking, 
separately for each reference state of the SOA. 
Analysis of this question for the example of the 
two-angle method is the basic goal of this work. 

By definition only quantities which are constant 
for the given region enter the first term in the 
expression for T. Hence in the theoretical analysis 
of the effects associated with the variability of the 
atmosphere this term may be assumed to be zero. For 
this the condition (0) (0)

0 r( , )T T   


 must hold. 

For a concrete value of 0 the greatest difficulties 
under real conditions could be associated with 
setting the value of (0)

r ,T


 for example, owing to the 
fact that a large number of undetermined factors 
must be taken into account in the model calculations 
of the absolute values of the radiation temperatures. 
In practice the best method for giving 0 can 
apparently be based on direct referencing of the 
remote measurements at separate calibration points, 
for which simultaneous measurements of rT


 and the 

TOS are available. Since the quantities (0)
rT


 and 0 

enter the expression for T only in the first term the 
problem of giving 0 does not arise in the theoretical 
analysis of the other terms of the problem. For this 
reason a detailed analysis of this question need not be 
made in this paper. 

The optimal vectors 


 for each region must be 
determined by taking into account the second and 
third terms in (2). If it is additionally required that 




 satisfy the condition r, 1,
T
T

 
    




 then the 

quantity T will be determined by only the third 

term. The convenience of giving 


 in this manner 
lies in the fact that T will not depend on T. In this 
case the components of the vector 


 are related by 

the formula 1
2 1 1 2(1 )        and the expression for 

T finally assumes the following form: 
 

 (3) 
 

Here the fact that r ;
T
T


 






 was taken into 

account; the transmission of the atmosphere for the 
two viewing angles are denoted by 1  and 2. 

One can see from formula (3) that in the case 
when a strong functional relation exists between 1 
and 2 it would be possible to give 1 so as to make 
T equal zero. But since a1 and a2 depend on 2N 
variable quantities xi, such a relation could be 

realized only if all vectors rT
x






 are linear with one 

another. Numerical calculations show (see below) 
that this condition, strictly speaking, does not hold, 
and for this reason one can only hope that 
sufficiently strong statistical correlations exist 
between xi (and hence between a1 and a2 also). 
Physically the assumption that strong correlations 
exist between the parameters of the atmosphere at 
different altitudes means that the temperature and 
humidity profiles vary significantly as a whole and in 
correlation with one another. 

We shall determine the optimal values of the 
coefficients 


 and the corresponding values of the error 

in determining the TOS by minimizing  
the variance of the latter. Without specifying for  
the time being the ensemble of states of the SOA we 
shall write out the basic relations under the assumption 
that T(0) and (0)x


 are the mathematical expectations of 

the quantities T and .x


 We denote by 1 and 2 the 
standard deviations of a1 and a2 and by  the correlation 
coefficient between them. By definition the 
mathematical expectation of the quantities xi is equal 
to zero, so that the mathematical expectation of a1 and a2 
are also equal to zero. The expression for the standard 
deviation of T assumes, using (3), the form 
 

 (4) 
 

Thus far we have omitted from the factors 
determining T and  the errors in the measurements 
of the radiation temperature. If these errors sire 
assumed to be random and Independent and have zero 
mean values and the same standard deviation n for 
each channel, then it is sufficient to include the term 

2 2 2
1 2 n( )     in expression (4) in order to take them 

into account. The optimal values of 1, 2 and  with 
n  0 will be determined by the following relations: 
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 (5) 
 
where 
 

 
 

The relations (5) were obtained from the 

condition 
2

1

0.





 

We denote by H the matrix constructed from the 

column vectors r

i

T
x





 (i = 1, , 2N), by HT the 

transposition of H; and, by G the matrix of 
covariations of the atmospheric parameters. The 
quantities 1, 2, and  can be determined in terms of 
the matrix  given by 
 

 (6) 
 

To obtain numerical it is necessary to choose a 
radiation model of the SOA for the chosen spectral 
interval as well as the values of T(0), (0),x


 and G. 

The latter were taken from Ref. 9; in addition, in all 
cases T(0) was assumed to be equal to the temperature 
of the bottom layer of the atmosphere. We note that 
the data in Ref. 9 were obtained by averaging over a 
period of one month for summer and winter 
separately and in tropical regions for spring and fall 
also. In case of monthly averaging over the indicated 
regions the condition of statistical stability can 
apparently be regarded as satisfied. 

The derivatives rT
T


 






 and r

i

T
x





 were 

calculated for the spectral interval 900–920 cm–1, 
and absorption by water vapor only was taken into 
account. The transmission is calculated as the 
product of the continuum and selective components. 
The continuum absorption was given according to 
Ref. 10 and the selective absorption was given 
according Goody’s band model using the 
Curtis-Godson method for inhomogeneous 
atmospheres.11 The generalized parameters of the 
lines required for the calculations were taken from 
Ref. 12 where they are presented for three 
temperature T0 (220, 260, and 300K) and the 
atmospheric pressure P0. The generalized parameters  
 

of the lines are Interpolated to the running 
values of T and P with the help of the relations10 
 

 
 

 
 
where S and  are the intensity and half-width of the 
lines. 

The transfer equation was integrated on an 
ES-1033 computer with double precision by the 
trapezoidal method up to an altitude of 10 km with 
a uniform step of 0.1 km. Linear interpolation of the 
profiles of the meteorological parameters at  
the integration nodes was employed for the 
temperature and exponential interpolation  
was employed for the humidity. Referencing of the 
pressure levels9 to the altitude was performed using 
five standard atmospheres.13 The surface  
was assumed to be absolutely black. 
 

 
 
FIG. 1. The angular dependence of the errors in 
determining the TOS for two regions with 
different values of n; the broken lines pertain to 
the region 4.6 (fell); the solid lines perteln to the 
region 3.1 (summer); n = 0 (1), 0.01 (2), 0.05 
(3), and 0.1K (4). 

 
The main computational results are presented In 

Figs. 1–4. Figure 1 shows the dependence of the 
optimal values of  on the angle of observation  for 
two characteristic atmospheric conditions – the 
region 4.6 (fall) according to the classification of 
Ref. 9 includes the Caribbean Sea, the Gulf of 
Mexico, and the adjacent part of the Pacific Ocean 
and the region 3.1 (summer) includes the eastern 
subtropical sector in the north Atlantic. Some 
numerical data for the same regions are presented In 
Table I. The angle  indicates the direction of 
observation in the second channel (the angle is 
measured relative to the zenith at the point where the 
observation ray Intersects the surface); the first channel 
In all cases corresponds to observation at the nadir. 
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TABLE I. 
 

Effect of the regional peculiarities of the atmosphere 
 

 
 

The character of the dependence of  on  is largely 
determined by the value of n. For n = 0 the optimal 
angle  = 20–30, but in the range  = 20–60 the 
changes in or are small. For the most realistic level of 
error in the measurements  = 0.1K the dependence of 
or on â is stronger owing to the fact that as  increases 
the quantity 2 2 1/2

1 2( )      decreases substantially. 

This results in a sharp decrease in  right down to 
 = 60 (higher values were not studied). 
 

 
 

FIG. 2. The optimal values of the errors in 
determining the TOS for 48 regions from Ref. 9 for 
two values of n: n = 0 (dots) and 
n = 0.1K(crosses). 

 

Figure 2 gives an Idea of the optimal values of  
for all 48 average atmospheric situations from Ref. 9 
with  = 60'. The clear tendency for  to increase as 
the integral moisture content of the atmosphere Q 
increases is interesting; for large values of Q (in the 
tropical regions), however, for the same values of Q  
can vary considerably from one region to another. This 
occurs because  is determined not only by the integral 
content of water vapor in the atmosphere but also by 

the characteristics of the variability of its altitude 
distribution. The variability of the altitude profiles of 
the air temperature also has an effect. 

The highest values  = 0.52–0.53K (with 
n = 0.1K) are reached in the Indian Ocean (region 
4.3) during the spring, summer, and fall 
(Q = 4.5–5.4 g/cm2). For those regions in which 
Q < 3.5–4.0 g/cm2,  < 0.35K with n = 0.1K 
and  < 0.1 K with n = 0. This indicates that outside 
the tropics the quantity  is determined primarily by 
errors in the measurements of the IR radiation. 

Figures 3 and 4 show the optimal values of the 
coefficients 1 and 2 for each region. It should be noted 
that the optimal values of 


 are different for different 

regions. The computational results obtained with n = 0 
are not presented in Fig. 4, since they fit completely 
into the region containing some of the points obtained 
with n = 0.1 K, for which 1 > 2.1 and 2 < –1.1. 
 

 
 

FIG. 3. The optimal values of the coefficient 1 for 
48 regions from Ref. 9 for two values of n (the 
notation is the same as in Fig. 2). 
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Taking n into account has virtually no effect on 



 for large values of Q, but for Q < 1 g/cm2 


 
depends much more strongly on Q. It is obvious from 
the data shown in Fig. 4 (see Table I also) that for 
n = 0.1K for some regions (for which 
Q < 0.3 g/cm2) even positive values of 2 are obtained. 
This actually indicates that the two-angle method of 
atmospheric correction becomes degenerate; the 
optimal value of 


 in such situations is determined 

not so much by the mechanism employed to take the 
atmospheric noise into account, as by the minimization 
of ,


 which determines the contribution of the 

errors in the measurements of T to . This effect is 
clearly illustrated by the data presented in Table I for 
region 2.6 (this region includes the Sea of Japan). 
 

 
 
FIG. 4. The relation between the optimal 
coefficients 1 and 2 for regions from Ref. 9 with 
n = 0.1 K. The strait line satisfies the condition 
1 + 2 = 1. 

 
We note that the estimates presented for the 

coefficients cannot be used in practice for a number 
reasons, the most important of which are the 
approximate character of the radiation model of SOA 
employed in the calculations (absolutely black surface, 
no clouds, no aerosol, etc.) and the a priori nature of 
the information. 

The foregoing analysis demonstrates the 
approximate character of the simple linear method of 
atmospheric correction and makes it possible to 
 

understand more deeply the physical mechanisms 
responsible for the interfering action of the atmosphere 
in the determination of the TOS by remote methods 
from measurements at two angles. In different regions 
the errors in determining the TOS and the optimal 
coefficients in the algorithm for calculating the TOS 
differ significantly. The errors in the measurements of 
the IR radiation are an additional source of error. In 
most cases the TOS is determined with an accuracy of 
0.2–0.35 K, but in separate situations it can be 
somewhat worse than 0.5 K. 
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