
456  Atmos. Oceanic Opt.  /May  1989/  Vol. 2,  No. 5 K.V. Shishakov and V.I. Shmal’gauzen 
 

 

DESIGN OF A MEASURING DEVICE 
FOR ADAPTIVE ATMOSPHERIC OPTICAL SYSTEMS 

 
 

K.V. Shishakov and V.I. Shmal’gauzen 
 
 

Moscow State University 
Received September 28, 1988 

 
 

Wavefront reconstruction with the help of Zernike polynomials is considered in the 
situation where the wavefront is measured by phase detectors and local tilt detectors, and 
measurement noise is taken into account. 

 
 

The design of a measuring device is a component 
part of the design of an adaptive optical system. It has 
been shown1,2 that its optimization is closely connected 
with the characteristics of the whole system. For 
practical purposes it is sometimes expedient to 
consider the measuring device separately in the belief 
that the wavefront corrector ideally reproduces only a 
limited number of characteristic forms of the phase 
distortions of a light wave. For circular receiving 
apertures it is sometimes convenient to expand the 
phase of a light wave. The quality of such measuring 
systems can be characterized by the rms error of the 
reconstruction of the wavefront by the Zernike 
polynomials as measured by actual detectors. 

The purpose of this stet is to investigate the 
quality of wavefront reconstruction by Zernike 
polynomials for different positions of the phase and 
local tilt detectors, taking their measurement noise 
into account. 

Let us consider the measurement of the wavefront 
by means of the phase detectors. The result of their 
measurement is the value of the phase of the light at n 
points rk: 
 

 (1) 
 

where  is the precise value of the phase, (rk) is the 
detector noise which has variance 2

1  and not 

correlated with  or (rk), j  k. 
The expansion coefficients i of the wavefront 

over the first m Zernike polynomials Z1 are determined 
by minimizing the error 
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We will not consider the constant polynomial 
Z1(r) = 1. Then, 
 

 
 

 (3) 
 
where aij are the elements of the inverse matrix of the 
matrix with the elements 
 

 
 

The tilt detectors characterize the average values 
i and i of the local tilts of the wavefront in the 
subaperture fields. The following values2 can be 
approximately taken as the results of such detector 
measurements: 
 

 
 

 (4) 
 

or 
 

 
 

 (5) 
 

where r = (x, ó) is the position vector in Cartesian 
coordinates; N is the number of detectors; the 
parentheses a 

k
(,)  denotes the scalar product of any 

two functions in the fields of sub-aperture k (integral 
from the product of functions); Sk is the area k; k 
and k are noise levels of the measurements with 
variance 2

2  which are uncorrelated with each other 
and with the exact values of wavefront tilts. 

According to the data of the tilt detector 
measurements one can reconstruct the value of the phase 
of the wavefront at separate points4,5. Let us consider 
this problem in detail. To simplify calculations for a 
great number of the tilt detectors uniformly filling the 
area of the receiving aperture  we may turn from 
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Eqs. (4) and (5) to the continuous model and assume 
that the following values are measured 
 

 (6) 
 
where X and Y are the measured values of the tilts. 
Using the apparatus of the calculus of the variations6, 
we minimize of the functional of the measurement errors 
 

 (7) 
 
We thereby obtain the internal Neumann problem 
 

 
 (8) 

 
 
where  is the boundary of  and n is the outer normal 
to . Using the grid approximations of Eq. (8), one 
can construct different algorithms for the 
reconstruction of the phase at the points of the 
specially chosen grid based on the measurement data, 
of the wavefront tilts at these separate points. Thus, 
for a square grid we have the well-known equations4,5. 
 

 (9) 
 
where 
 

 
 

 
 
h is the grid step, the ordered pair (i, j) characterizes 
the position of a grid point with respect to the 
Cartesian coordinate axes. 

It is not difficult to write analogous expressions 
for more complicated irregular grids. One should note 
that for a small number of tilt detectors an approach 
similar to that described in Ref. 4 is more correct and 
solves the problem directly in a discrete formulation. 
As a result, when the receiving aperture is densely 
filled with the subapertures of the tilt detectors, the 
latter can with some degree of approximation be 
replaced by the phase values at the points of a covering 
grid. When the dimensions of the subapertures are 
small compared to the distances between them, it is 
necessary to use expression (4) or (5). 

Let us estimate the quality of the reconstruction 
of the wavefront using the Zernike polynomials Z(i) 
by the functional 
 

 (10) 
 

where S is the area of Ï and the angular brackets 
denote the mean value of the ensemble of realizations. 

Within the framework of the Kolmogorov model 
of the turbulent atmosphere the phase errors are 
characterized by the structure function 
 

 (11) 
 

Here D is the diameter of the circular area ; r0 is the 
Fried correlation radius3; and  is a dimensionless 
distance, where   (0, 1). First let us consider the 
quality of reconstruction of the wavefront by the 
phase-detector measuring system. We substitute 
Eq. (3) into Eq. (10) and take into consideration the 
relation between the correlation function and the 
structure function3: 
 

 
 

 
 (12) 
 

Then, using the results of Refs. 3 and 7, we obtain 
 

 
 

 
 

 (13) 
 

Expressions (13) determine the value of functional 
(10). It is often convenient to single out an individual 
noise component of the functional. Then, 
 

 (14) 
 

where J is the exact value of the functional and 
m n

2 2
1 ik

i 2 k 1

J
 

     is its noise. 

Now it Is clear that the values J and J can become 
comparable at strong noise levels of the measurements. 
To decrease the influence of the noise we can introduce 
a system of adaptation to the noise level. To do this, we 
formally replace Â1 by the expressions i 1 1,c    in 

which the coefficients c1 can be determined by 
minimization of functional (10). We note that even in 
the absence of noise the coefficients c1 will correct, to 
some extent, the mistakes of algorithm (3) for any 
unsuccessful arrangement of the detectors. 

Calculations were carried out for 10 different, 
physically reasonable arrangement of the phase 
detectors. The first six variants are given in Figs. 1 and 
2. By means of them it is also possible to describe the 
tightly packed tilt detectors which yield a further 
reconstruction on the phase. In these Figures the phase 
and phase tilt detectors are indicated by points and 
circles, respectively. The values of the parameter 
2R/D for these variants are 0.9, 0.6, 0.5 in Fig. 1a, b 
and c and 0.5, 0.33, 025 in Fig. 2a, b and c, 
respectively. Four other variants were considered with 
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19, 31, 55, 79 phase detectors in the center and on 
concentric circles 2, 3, 4 and 5 spaced an equal distance 
R from each other where the ratio 2R/D is 
respectively equal to 0.5, 0.33, 0.25, and 0.2 (Fig. 3). 
Reconstruction of the wavefront by the 6 and 10 
lowest-order Zernike polynomials, respectively3,7, is 
also considered. The calculated results are displayed in 
Table 1 (m = 6) and Table 2 (m = 10): 
 

 
 

I2j corresponds to I1j, where an adaptation to the 
noise level has been introduced. The values of this 
index j = 1, 2, and 3 correspond to the values of this 
parameter 2

1 (r0/D)5/3 = 0.001, 0.01, and 0.1. If the 
values of this parameter exceed unity, then, according 
to the calculations we should restrict our calculations 
to reconstruction of the mean aperture tilts since the 
measurement noise sufficiently exceeds the 
contribution of the higher aberrations. 

These results can also be used for an approximate 
analysis of the reconstruction of the wavefront made 
by the tightly packed local tilt detectors. The noise J 
associated with the functional J in this case is 
determined by the equation 
 

 (15) 
 

TABLE 1. 
 

 
 

TABLE 2. 
 

 
 

 
 
FIG. 1a, b, c. Location of the phase and tilt 
detectors at the, grid points of a square grid. 

 

 
 
FIG. 2a, b, c. Location of the phase and tilt 
detectors at the grid points of a polar grid. 

 

 
 

FIG. 3. Location of the phase detectors. 
 

The values of the correlations ik( ) ( )r r   

can be approximately determined using Eq. (4). 
Since we have a linear problem, the values of , x 
and ó in Eqs. (4) can be replaced by their associated 
noise levels , , and . We denote  

2
1 i,j ,   2 i,j±1 ij i±1,j ij ,        

3 i±1,j±1 ij ,     4 ij i±2 ij i,j±2 .         

Ignoring the other correlations and determining the 
values 2

ij ,f  ij i,j–1 ,f f  ij i+1,j–1 ,f f  and ij i,j–2 ,f f  it is 

not difficult to obtain a system of linear equations which 
has the following solution: 2 2

1 20.16 ,h    
2 2

2 3 20.04 ,h      4  0. One should note that the 
problem has not been calculated in its most general form 
since its solution is determined by a concrete 
reconstruction algorithms8. For square grids of the 
locations of the tilt detectors an analysis of the 
reconstruction of the phase ij, which allows for 
measurements noise, is given in Refs. 4 and 5. 

Let us consider the influence of the dimensions of 
the subaperture fields on the quality of the 
reconstruction of the wavefront by the Zernike 
polynomials. If the diameter of the circular 
subapertures are smaller than the distance between 
them, reconstruction algorithms (8) and (9) can result 
in large errors. That is why in such cases the expansion 
coefficients i are determined in the following way. Let 
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us consider a linear combination of the measured values 
 

 (16) 
 
in which the unknown coefficients Aik and Âik can be 
found from the condition of minimization of functional 
(10) for structure function (11) in the absence of 
measurement noise (k = k = 0). Thus we obtain a 
system of linear algebraic equations of the following type 
 

 
 

 (17) 
 

 
 
where 
 

 
 

 (18) 
 
The value of functional (10) of the quality will then be 
determined by expression (14), in which 
 

 (19) 
 

 
 

It is not difficult to show that dispersions kk,d  and kkd  

on circular subapertures with radius rc, in the absence of 
measurement noise, can be determined by the formula 
 

 (20) 
 
in which the coefficient C for expressions (5) 
corresponds to the results of Ref. 7 and Is equal to 
1.796. Then, using Eqs. (4), the calculations give 
C = 1.673. Below we will use the latter value of C. If 
the dimensions of the subapertures are considerably 
smaller than the distance between them, then to 
simplify the calculations the values (e and e in 
Eq. (18) can be approximately replaced by the values 
 

of the tilts at the centers of the subapertures 
(rå)/õ, (rå)/ó. Such calculations are made for 
circular subapertures with radius rñ. The first five 
variants of the arrangement of location of the tilt 
detectors were considered (Figs. 1 and 2), for which 
the parameter 2 R/D was 0.9, 0.6, 0.5, 0.67, 0.5, 
respectively. The sixth variant was replaced by an 
equidistant distribution of 12 local tilt detectors on a 
circle with radius R = 0.4 D. The calculated results, 
when reconstructing with the first six Zernike 
polynomials, are given in Table 3, where we have left 
their previous designations. It is seen from the table 
that the size of subapertures plays a more important 
role compared to the number of the local tilt detectors. 
 

TABLE 3. 
 

 
 

The influence of measurement noise on the 
obtained results is considered for the first variant, 
which is more often used in practice. Thus, for 
2r = 0.45D, 2 5/3

2 0( / )r D = 0.001, 0.01, 0.1, 1 and 
10, we have the following values of I(r0/D)5/3: 0.073, 
0.076, 0.106, 0.414, and 3.5. After introducing a 
system of adaptation to the noise level these values 
reduce to 0.073, 0.076, 0.105, 0.314, and 0.805. Thus, 
the discussed technique and the model examples 
calculated according to it can be useful in the choice of 
the design of a measuring system for the reconstruction 
of the wavefront by lower-order Zernike polynomials. 
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