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The problem of optimizing the optical design of a telescopic resonator when the 
mirrors are subject to thermal deformation is studied. It is proposed that a mirror with 
a precomputed aspherical surface be inserted into the resonator in order to correct for the 
divergence of the output radiation. It is shown that relatively simple methods based on 
the geometric optics approximation can be effectively employed to calculate the 
correcting profile. 

 
 

Thermal deformations of resonators mirrors are 
one of the principal causes for the difficulty of 
obtaining laser radiation with high output power and 
small angular divergence1,2. They can be reduced by 
choosing appropriate materials for the mirrors, 
improving the technology employed for working the 
mirror surfaces, and using different cooling systems. 
Such "passive" methods cannot, however, remove 
thermal deformations completely. 

It is thus of interest to study active methods for 
interactivity correction. In one such method aspherical 
mirrors, which are designed taking into account the 
thermal deformations produced by a given radiant 
load, are inserted into the resonator. In particular, a 
mirror with a controllable surface profile can be 
employed to correct for thermal distortions3. The 
aspherical surface profile of such a mirror is formed by 
applying precomputed controlling voltages to its drives. 
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FIG. 1. 
 

In this paper we shall discuss methods for 
calculating aspherical optical elements to be used to 

correction for the thermal deformations of resonator 
mirrors. 

1. Consider an unstable telescopic resonator whose 
concave mirror is a correcting mirror (Fig. 1a). We shall 
analyze the axisymetric case. We shall represent in the 
following form the phase shift acquired by the wave on 
reflection from the concave mirror: 
 

 (1) 
 
where 0(r) is the regular phase corresponding to the 
undisturbed spherical profile of the mirror, the phase 
profile c(r) takes into account the distortions of the 
reflecting surface owing to heating, and u(r) is the 
correcting phase component which we shall represent 
in the form of a power series: 
 

 (2) 
 

The problem of compensating for the thermal 
distortions consists of determining the aberrational 
coefficients cn that give the minimum divergence of 
radiation. 

In Ref. 2 the aberrational coefficients were 
computed by gradient methods, which have been 
successfully employed for solving linear optimization 
problems3. In application to the nonlinear case under 
study here gradient methods require repeatedly solving 
the self-consistent problem of the propagation of 
radiation in the resonator taking into account the 
thermal deformations of the resonator mirrors, which 
presents considerable computational difficulties. 

In this connection it is important to develop 
simpler, semi analytical methods for calculating the 
aspherical profile of the correcting mirror of a resonator. 

2. We shall find the distribution of the phase of 
the radiation in the output plane of a telescopic  
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resonator (Fig. 1a) which has a magnification M and 
whose mirrors are deformed owing to heating. For this 
we shall employ the well-known approach of Ref. 1, 
based on the geometric-optics approximation. The 
main assumption is as follows. The ray paths in a 
resonator with deformed mirrors is identical to that in an 
ideal resonator. Distortions of the mirror surfaces merely 
change the optical path length of the corresponding rays 
(this is true for small deformations). 

Because of the presence of thermal deformations 
of the mirrors the optical path length will be different 
for different rays in the resonator. As a result the phase 
front (r) in the output plane will not be planar, and 
this difference will equal the difference of the optical 
path lengths for rays with different coordinates r in the 
output plane. 

Figure 1b shows an optical line equivalent to the 
telescopic resonator. The resonator mirrors correspond 
to converging and diverging lenses, and the thermal 
deformations of the mirrors deformations of the 
mirrors are modeled by thin phase screens placed near 
their surfaces. Each cell of the equivalent scheme 
corresponds to one complete pass of the radiation in 
thro resonator. We denote by rD and rC the radii of the 
diverging and converging mirrors and by wD(r) and 
wC(r) the displacements of the surfaces of the mirrors 
owing to heating. We shall represent the thermal 
deformations in the form of power series: 
 

 (3) 
 

 
 

We shall find the difference of the path length 
between the arbitrary ray OO1O2 , passing along the 
axis of the resonator. If the coordinate r of the ray 
ABC... falls within the diverging mirror [O, r2], then 
the difference of the optical path lengths of these 
rays in one period of the equivalent scheme can be 
written as follows: 
 

. (4) 
 

In the case when the coordinate r lies in the 
output aperture ]rD, 1], the corresponding difference 
of the path, lengths can be expressed by the relation 
 

. (5) 
 

The expressions (4) and (5) for the difference of 
the optical path lengths accumulating over one 
complete passage through the resonator can be 
represented, substituting (2) and (3), in the form of 
the following power series: 
 

 (6) 
 

where I 2n
n n n n(1 1/ ) 2( ),a M b c       and, 

correspondingly, 
 

 (7) 
 

where II
0 0;a   II 2n

n n n n/ 2( ).a M b c      
After one complete pass through the resonator the 

coordinate of the ray ABC... will be r/M. To calculate 
the path difference in the next sections of the 
equivalent scheme we can employ the formulas (6) and 
(7), replacing in them the coordinate r by r/M, r/M2, 
r/M3, etc. Since no ray passes within the output 
aperture ]rD, 1] twice the total difference of the 
optical paths (r) of the rays with different coordinates 
in the output plane can be calculated as follows: 
 

 
 

 (8) 
 
Substituting the series (6) and (7) into this expression, 
and summing the corresponding series gives 
 

 
 
The expression (9) describes the spatial profile of the 
wavefront of the output radiation of a thermally 
deformed resonator. 

In an ideal telescopic resonator (r) = const. We 
shall determine the values of the coefficients cn for 
which this equality holds the output aperture ]rD, 1] 
of the resonator with deformed mirrors. 

One solution can be obtained by equating to zero 
the coefficients in the power series (9b). The 
aberration coefficients cn sought are then related with 
the coefficients in the power series for thermal 
deformations by the simple relation 
 

 (10) 
 
The rest of the problem is solved by numerical methods. 

3. The numerical experiment consists of the 
following. 

As the first step the self-consistent problem of the 
propagation of radiation in the resonator is solved 
taking into account the thermal distortions of the 
resonator mirrors. The method employed to solve the 
self-consistent problem is studied in detail in Ref. 2 
and consists of calculating the distributions of the 
complex amplitude of the field and the corresponding 
profiles of the thermal deformations of the resonator 
mirrors. The calculation of the field at each stage is 
performed by the method of establishment using the 
Fox-Lee iteration procedure1. 
 



304  Atmos. Oceanic Opt.  /April  1989/  Vol. 2,  No. 4 I.A. Borodina et al. 
 

 

The thermal deformations are determined using 
the semianalytical computational method proposed in 
Ref. 5. The mirrors are represented in the form of flat 
circular plates. It is assumed that the temperature of 
the cylindrical surfaces of the mirrors is maintained 
constant. The method is based on the combined use of 
the stationary, uncoupled theory of thermoelasticity of 
solids and the theory of bending of thin plates. The 
result of solving the self-consistent problem is the 
distribution of the stationary field in the resonator 
with thermal deformations and the profiles of the 
surfaces of the deformed mirrors. 

The second step of the numerical experiment 
consists of approximation the thermal deformations 
found wD(r) and wC(r) by power-law functions. This 
is done by the method of least squares. We shall 
assume that the form of the correcting aspherical 
mirror can differ from the initial spherical form by 
the presence of two types of aberrations, 
corresponding to defocusing 2

1( ( ) 3(2 1)S r r   and 

spherical aberration 4 2
2( ( ) 5(6 6 1).S r r r    Then 

only three terms need be retained in the representations 
(2) and (3) for the correcting component and the 
thermal distortions: n = 0, 1, and 2. 

At the third stage the coefficients of the power 
series (2), guaranteeing that within the output 
aperture the phase of output radiation remains 
constant ((r) = const), are determined from the 
formula (10). The corresponding profile of the 
correcting mirror is calculated. 

The final stage of the numerical experiment 
consists of solving the self-consistent problem of the 
propagation of radiation in a resonator whose concave 
mirror has the form calculated in order to compensate 
for wavefront distortions introduced by the thermal 
deformations of the mirrors. 

4. The problem of optimizing the divergence of 
the output radiation was solved for a telescopic 
resonator with magnification M = 2.5 and equivalent 
Fresnel number Ne = 5.5. The radius and thickness of 
the output mirror D

0r  = 1.25 cm and D
0z  = 0.5 cm. 

The dimensions of the concave aspherical mirror 
C
0r  = 5 cm and C

0z  = 0.5 cm. The mirrors were made 
of copper and had reflection coefficients of 98.5%. 

The investigations performed revealed that the 
use of an aspherical mirror, whose form is calculated 
using the coefficients in the approximation of the exact 
distributions wD(r) and wc(r), obtained from the 
solution of the self-consistent problem, in the 
resonator permits virtually complete elimination of the 
effect of thermal distortions on the spatial structure of 
the output radiation. 

Figure 2 shows the distribution of the phase of 
the radiation in the output plane of the resonator. 
The existence of thermal deformations of the 
resonator mirrors leads to significant distortions of 
the wavefront of the output radiation. This is 
confirmed by numerical analysis curve 2). The phase 
distribution for a resonator with a correcting mirror 

is virtually identical to the corresponding 
distribution for an undeformed resonator (curve 1). 
 

 
 

FIG. 2. 
 

We shall employ the Strel number St (the ratio of 
the intensity at the focal point of the lens positioned at 
the output of the deformed resonator to the 
corresponding value for the undisturbed resonator) to 
evaluate the divergence of the output radiation. In our 
case St equals 0.065 in the case of a resonator with 
thermal distortions without compensation and 1.02 
with compensation. 

The shape of the aspherical mirror was determined 
using the distribution of the thermal deformations of the 
mirrors determined by solving the self-consistent 
problem. In practice it is quite difficult to calculate or 
measure the thermal deformations. In this connection 
the approach to the calculation of the form of the 
corrector can be modified somewhat by concentrating on 
data accessible in practice. We shall study two variants. 

In the first case only one distribution of the 
intensity in the plane in front of the output mirror is 
employed. Then, taking into account the geometry of 
the resonator, the intensity distribution in the plane in 
front of the converging mirror of the resonator is 
determined and the thermal deformations of the 
mirrors, which, generally speaking, differ from wD(r) 
and wÑ(r), obtained by solving the self-consistent 
problem, are calculated. All further calculations are 
performed by the scheme described above. Curve 3 in 
Fig. 2 characterizes the distribution of the phase 
corresponding to a resonator the shape of whose 
aspherical mirror was chosen by the described method. 
In this case St = 0.98. 

In the second case only the average intensity 
within the output aperture is calculated. It is assumed 
that the diverging mirror is illuminated uniformly 
with this intensity. The corresponding intensity in the 
plane of the correcting mirror is found, and the  
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distributions of the thermal deformations of the 
mirrors are calculated. In spite of the significant 
simplifications in calculating the profile of the 
aspherical mirror St for the output radiation can be 
increased up to 0.93. The phase distribution in the 
output plane is shown in Fig. 2 (curve 4). 
 

 
 

FIG. 3. 
 

Figure 3 shows the dependence of St on the 
total maximum deflection of the mirrors  

w(0) = wD(0) + wC(0), caused by deformation. The 
quantity w characterizes the radiant load, which can be 
calculated from the given value of the output radiation 
power. Curve 1 in Fig. 3 corresponds to the standard 
resonator with thermally deformed mirrors. Curves 2, 3, 
and 4 illustrate the respective results of optimization of 
the shape of the concave mirror for the three methods of 
calculating the correcting profile studied above. The 
broken line shows the dependence St(w) determined 
using gradient methods of optimization. 

Table 1 gives some results in order to compare the 
effectiveness of different methods for calculating 
correcting mirrors. 

The dependences presented were obtained 
neglecting the saturation of the gain of the active 
medium. As was checked with the help of a numerical 
experiment, taking these effects into account does not 
significantly change the results. 

Thus our investigation showed that inserting an 
aspherical mirror into the resonator enables 
eliminating practically completely the effect of 
thermal distortions on the spatial structure of the 
output radiation and reducing its divergence virtually 
to zero. It was shown that the correcting profile can be 
calculated efficiently using relatively simple methods 
based on the geometric-optics approximation. 

 

TABLE 1. 
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