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This paper analyzes in a geometrical acoustics approach some features of techniques 
for measuring arrival angles of sound waves caused by regular atmospheric 
inhomogeneity and by motion of the source. An expression is derived which relates the 
arrival angle to the phase difference of signals measured with an acoustic direction 
finder. Analytic expressions are obtained which relate the phase difference of the signals 
the profiles of temperature and wind velocity. Based on the relations derived, a technique 
is proposed for sensing the lower atmospheric layer. 

 
 

It is known1 that atmospheric refraction makes 
the arrival angle  of a sound wave depend on the 
profiles of temperature T and wind velocity v. This, in 
turn, allows for the determination of these 
meteorological parameters using measurements of 
acoustic wave arrival angles. Both active and passive 
remote sensing techniques can be used2–4. In active 
methods, sodar itself sends a narrow sound packet into 
the atmosphere where it is partially scattered by 
atmospheric inhomogeneities. In passive methods, the 
sodar works only as a receiver of sound signals from 
external sources, either natural or artificial. 

The receiving antenna of the sodar used in such 
measurements is normally composed of two or more 
groups of phased microphones with a spacing between 
their centers d2,4. Using such a receiving system one 
measures only the phase difference  between the 
signals recorded by each of the groups, while the 
arrival angle  is calculated according to the 
relationship 
 

 (1) 
 
where k0 = /c0 is the wave number at the center of 
the baseline d, c0 is the speed of sound in air,  is the 
angular frequency of the sound oscillations. Íåãå  is 
the angle between the normal n to the phase front of 
the wave at the center of the antenna and the normal 
to the base line d. 

This paper deals with two problems. First of all 
we should like to estimate the applicability of 
expression (1) to the case of an inhomogeneous moving 
medium (as is the case with the atmosphere) and a 
moving sound source. The second problem concerns 
the desired derivation of analytical expressions 
relating the measured phase difference  to the 
atmospheric temperature T and wind velocity V both 
for passive and active sodar techniques. The first of 

these problems has never been considered before, while 
the second one was solved only in the simplest case of 
active sounding in the vertical direction4,5 using a 
monostatic sodar. 

Let a point sound source move with respect to an 
observer at a constant subsonic speed V. In addition, 
let the wavelength of sound it produces be small 
compared to the regular atmospheric inhomogeneities. 
Assume then that the current phase of sound 
oscillations is described, in the coordinate system K 
comoving with the sound source, by the function 
r(t). The position of the sound source in the 
coordinate system K, the origin of which coincides 
with the center of the receiving antenna, and z axis of 
which is directed vertically, we shall describe by the 
radius-vector r(t). 

Let us make use of the invariance of the phase of 
the sound wave in the two coordinate systems K and 
K6,7 related to each other by a Galilean 
transformation; this means that 
 

 (2) 
 

where , t and , t are the coordinates and time 
of the same event in coordinate systems K and K, 
respectively. Since the wave disturbance produced by 
sound at the moment ti reaches the point  in a finite 
time  = t – ti  0, we have (, t) = r(t – 
). As a consequence one finds in the geometrical 
acoustics approach that 
 

 (3) 
 
where K0 = /ñ0, [r(ti), ] is the eikonal of sound 
propagating along the beam trajectory L[r(ti), ] from 
the point r(ti) to . 

One can get from Eq. (3) to the direction finder 
formula in the case of a homogeneous moving medium, 
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by assuming that the point  is within the receiving 
aperture (  d/2), and expanding the right-hand 
side of (3) as a Taylor series in the small parameter 
/r ` 1. It is pertinent here to calculate to the 
accuracy with which the expression (1) was obtained for 
a homogeneous medium. For this reason we shall neglect 
terms of third and higher in /r. Since the sound source 
is moving, the oscillations arriving at the receiving 
points 0 and  are emitted at different points separated 
by  = r – r0 = –v(t – 0). Here r0 = r(t – 0) 
and r = r(t – ) (see Fig. 1). According to 
expression (3) the vector  is given by 
 

 (4) 
 
where () = (, t)—(0, t). 

Since 0( , 0) ( , )r r       and ,v c  .    

As a consequence, for v  0 one has the 
additional small expansion parameter /r0 ` 1, 
which simultaneously depends on  and v. Thus, one 
obtains a double series of the form 
 

 
 

 
 

 
 

 (5) 
 
where  and r are the operators of differentiation 
with respect to  and r = r0 + , respectively. 

Taking into account the fact that in angular 
measurements it is not the absolute value of the wave 
phase that is important but its variations within the 
receiving area, one can write down an equation for 
() based on expressions (5) and (3). Using the 
eikonal equation1 for a sound wave propagating 
through an inhomogeneous moving medium and Eq. 
(3) one can write 
 

 (6) 
 
where 0(r) = c0/[c(r)n0(r)] is the atmospheric 
refractive index for sound waves. The index '0’ 
denoting the wave parameters is used here to show that 
the wave propagates along the sound ray 
L = L0(r0, 0) (see Fig. 1). 

Analogously, one has 
 

 (7) 
 
Expression (7) has the opposite sign right-hand side as 
compared to (6) because when (  r)(r0, 0) > 0 
the scalar product   (r0) is negative. 
 
 

 
 

FIG. 1 
 

In the atmospheric ground layer 1 1;  n  
therefore, allowance for refraction of sound in the 
atmosphere can result only in small relative 
corrections8. Owing to this fact, the influence of sound 
refraction on the remaining second- and higher-order 
terms in the series (5) can be neglected. Thus the radius 
of phase front curvature of the wave at the point 0 can be 
assumed to be equal to r0, and using (6) and (7) one has 
 

 
 

 
 

 (8) 
 
where 
 

2
0 = n0(0)[n0(0)] and 2

0 = n0(r0)  [n0(r0)] are 

the transverse components of  and  relative to the 
normal n0(r) at the point of origin of these vectors. 
Substituting (5) into (6) and (8) and taking (4) into 
account, one can obtain for () the ordinary 
quadratic equation A2() + Â() + Ñ = 0 
with coefficients 
 

 
 

 
 

 
 

where U0(r0) = c(r) + v(r)  n0(r) is the phase speed 
of sound, 0v


 = n0(r0)[vn0(r0)], 0n = n0(0), and 

v0n = vn0(r0). The physically meaningful root of this 
equation gives the following solution to the problem: 
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 (9) 
 

where () = /B(v) is the angular frequency of 
sound oscillations received at the point , with the 
Doppler effect taken into account. 

Note that if v ` c, then the third term in the 
expression for B(, v) can be neglected, which means 
that the difference in the Doppler frequency shift of 
sound received at different points of the receiving 
antenna does not affect the value of (). However, in 
the more general case of v < c, these differences in the 
Doppler shift can be quite large, broadening the received 
signal spectrum by  = (0) v n0(r0) / d/(2r0) as 
compared with the initial spectrum emitted by the 
source. Using Eq. (9) for the definition of the phase 
difference  = (1 = d/2) – (2 = –d/2) one has 
 

 (10) 
 

In contrast to Eq. (1), this expression contains a 
Doppler correction to  as given by the denominator in 
Eq. (10). The values of n0(r0) and u0(r0) entering into 
this equation depend on the profiles of T and v, and 
therefore must be experimentally determined. One can 
therefore correctly determine the angle of arrival of 
sound from a moving source,  = arcsin {dn0(0)/d}, 
only if the central frequency (0) of the received signal 
spectrum is measured in addition to . At the same 
time, the spectral broadening  has essentially no 
influence on , even when v ` c. The new factor 0(0) 
in Eq. (10) characterizes the effect of wind on the speed 
at which sound approaches the receiving antenna, and 
corresponds to replacing c0 in Eq. (1) with 
u0(0) = c0 + v0 n0(0), where v0 = v(0). In the form 
presented here Eq. (10) is not suitable for remote 
sounding of the atmosphere, and it is necessary to 
rewrite it in a form showing explicitly the dependence of 
 on T(z) and V(z). In doing so, it is sufficient to 
obtain a relationship linearized with respect to the small 
ratios9 v/c0 and 0/ (2 ),T T  where T = T – T0 and 

T0 = T(0). 
In all of the following calculations, the direction of 

the normal n0(0) in Eq. (10) is described by the angles 
n and n between the projections of n0(0) onto the 
planes y = 0 and x = 0 respectively and the z axis. The 
zenith angle n between n0(0) and z (see Fig. 1) is also 
used. Angular parameters characterizing the directions 
of other unit vectors (e.g. N) are introduced in a similar 
manner, using the subscript ’N’. 

In sodars, the signal phase difference can be 
measured simultaneously in both the y = 0 and x = 0 
planes1,3. For this purpose, two measuring channels are 
normally used, the orientation of whose baselines dx and 
dy is given by expressions dx/dx = icosR – ksinR 
when  = x is measured in the plane y = 0  
(x channel), and dy /dy = jcosR – ksinR when 

 = y is measured in the plane x = 0 (y channel). 
Here i, j, k are the basis vectors of the coordinate 
system K. These formulas take into account the fact 
that the axis of the receiving antenna 
R = (itanR + jtanR + k) cosR is perpendicular to 
its aperture. 

In that case, taking dx = dy = d, one has 
 

 
 

 (11) 
 

where angles n, n and n are unknown. To take into 
account the influence of refraction on these angles, it is 
more convenient to use the equations of Ref. 9, which, 
using the previously adopted notation can be written 
as follows: 
 

+ 

 

 (12) 

 

where xn(z) and ón(z) are the coordinates of a point on 
a sound ray as functions of z, Vx = Vi, Vy = Vj. 

Consider now the passive methods of sensing. Since 
a sound ray originates from the point r0, one can write 
 

 
 

By substituting Eq. (12) into these relations, written 
in the form xn(z)/z = tann + an(z) and 
ón(z)/z = tann + bn(z), and bearing in mind that 

n( ) 1a z n  and n ( ) 1,b z n  one obtains 
 

 (13) 
 

where p0 = –r0/r0, and functional F  mean average 
values of the functions F(z) over the interval from 0 to 
z0. Substituting Eq. (13) into Eq. (12) and noting 
that n 0 ,   n  one has 
 

 (14) 
 

Thus, using Eqs. (14) and (12) in Eq. (10) one obtains 
 

 
 

 
 

 (15) 
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Trigonometric functions of angles 0, 0 and 0 and the 
orientation P0 are calculated in Eq. (15) using the 
coordinates of the point r0(t) where the wave detected 
at time t was emitted. For example, tan0 = y0/z0, 
tan0 = x0/z0, cos0 = z0/r0, and so on. At the same 
time, if v  0 the sound source will have already 
moved to another point 
 

 (16) 
 
where 0(t) is the time for sound to propagate from the 
point r0(t) to the receiving antenna. Optical 
measurements, if made in parallel with the acoustic 
ones, could enable one to determine only the 
coordinates rs(t) in addition to v, but not r0(t). 

For a homogeneous medium, 0(t) = r(t)/c0, and 
therefore 2 2

0 0 0( ) [ ( ) ( / ) ( )] .t t c t r r v r  Determining 

the range r0(t) from the latter equation and excluding 
solutions with r0(t) < 0, one can find the expression 
for 0(t). From Eq. (16), one has 
 

 (17) 
 
where ps(t) = –rs(t)/rs(t) is the actual direction 
toward the sound source, vs = vps, 

2 2 2
s s .v v v    

Using expression (17), one can determine the 
coordinates r0(t) with a relative error of 1 1,  n  

provided that the components rs(t) and v are known. 
One can easily see that at low source velocities 
(v ` c), this accuracy for r0(t) in Eq. (15) is quite 
acceptable. However, formula (17) is applicable to 
(15) in an even more general case, when the receiving 
antenna is positioned so that vc/ñ ` 1. In this case 

s 0( ) ( ) 1t tp p n  for any value of v < c. The simplest 

case is that of a fixed sound source, for which it is 
unnecessary to use Eq. (17) (r0(t)  rs(t)), while 
Eq. (15) reduces to the form 
 

 
 

 (18) 
 
where the receiving antenna is assumed to be looking 
directly at the sound source (pR = ps). 

Obviously, if one uses two spaced antennas for 
sounding the atmosphere, it is possible to separate out 
the contributions of T(z) or v(z) into x and y. At 
the same time, the profiles Ò(z), vx(z) and vy(z) can 
only be reconstructed from the functional T, vx and 
vy if the height of the source varies. 

In active methods, the sound is radiated in any 
desired direction pT using the transmitting antenna of 
a sodar. The vector r0(t) then characterizes the position 

of the atmospheric scattering volume, whose 
coordinates are known only approximately due to the 
influence of the refraction. Therefore one must 
eliminate from Eq. (15) the dependence of  on x0, 
ó0 and z0 in order to use it in active techniques. 

Let the sounding be performed using a bistatic 
scheme with the receiving and transmitting antennas 
are spaced by D p d. Then R = T = 180° and 
n = R

9. Accordingly, it only makes sense to 
measure  in the ó channel. Making use of the 
condition that the sounding beam trajectory (in this 
case curve yT(z)) passes through the point r0 prior to 
scattering, one obtains 0 T Ttan tan .b     In this 

situation dy ps  d bT cos Tcos R in Eq. (15), 
and hence one can write 
 

 
 

 (19) 
 

For the monostatic scheme, when pR = –pT, and 
Eq. (19) reduces to which takes an extremely simple 
form for the case of vertical sounding, 
 

 (20) 
 

By interchanging subscripts x and ó and angles T 
and T, we obtain the analogous formula for x. 
 

 (21) 
 

Equation. (20) is well-known4,5. In practice, this 
formula has been used for interpreting sodar sensing 
data. The data in this paper have demonstrated good 
agreement between sodar data on the horizontal 
components of the wind velocity vector and analogous 
data obtained with a 300 m high meteorological 
tower, under conditions of steady atmospheric 
stratification, large deviations between those 
measurements are observed due to the decrease in 
signal-to-noise ratio and growth of  fluctuations 
caused by atmospheric turbulence, the algorithm for 
data processing used in Ref 4 could not provide 
high-quality final results. 

Note, in conclusion, that since bistatic sounding 
provides higher signal-to-noise ratios both in passive and 
active methods, it can give better results than those in 
Ref. 4. The feasibility of obtaining information an 
temperature profiles in addition to wind velocity 
constitutes another advantage of these techniques. 
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