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We conduct numerical investigations of thermal blooming of an optical pulse train in 
an absorbing gas medium moving transverse to the beam at subsonic, transonic and 
supersonic velocities. In the subsonic and supersonic gas dynamics regimes, computer 
simulations are performed up to the point when a quasistationary blooming mode has been 
established. We show that during stabilization, the laser peak intensity can considerably 
exceed both its initial value and the value for the stabilized quasistat ionary mode. We 
investigated the effect of2 the pulse repetition rate on quasistationary blooming mode. 

 
 

The various and sundry investigations of the 
thermal blooming effects1–3 have scarcely touched 
upon the thermal blooming of the repetitively pulsed 
radiation in the transverse flow of a gaseous substance. 
One can find only a few such papers4–6, and in those, 
propagation effects in a gas flow with a relatively 
small transverse velocity (i.e. the convective gas 
dynamic case ) are described. 

This paper considers the thermal blooming of a 
repetitively pulsed beam in the subsonic and supersonic 
gas dynamic flows, including the quasistationary limit in 
which perturbations of the medium become periodic. 

Under the assumptions of a very small viscosity 
and thermal conductivity the gas dynamics equations 
using physical variables are as follows: 
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Here t is the time, x, y, z are the coordinates (z is the 
axis along the propagation direction and x is the axis 
along the direction of the gas flow),  is the density,  
P is the pressure, V is the gas flow velocity,  is the 
adiabatic exponent, i and j are the unit vectors along the 
x and ó axes, k is the absorption coefficient per unit mass 
( = k is the volume absorption coefficient), I* is the 

characteristic beam intensity, I is the dimensionless 
distribution function. 

Since the laser beam cross-section a is 
considerably less than the propagation length L, the 

gas flow is assumed to be two-dimensional. The gas 
dynamic variables depend on z as a parameter. Let us 
introduce into consideration the pulse duration 1 and 
the pulse repetition period 2. Assume that 
1 ` 2  v, where v = a/V0 is the typical gas 
dynamic time and V0 is the initial gas flow velocity. 
Let a be the laser—beam radius (geometrical for a 
uniform irradiance distribution or exponential for a 
Gaussian beam). For the typical intensity, we take the 
time-averaged (over a pulse) and space-averaged beam 
intensity I* = E1/(à21), where 
 

 
 

is the energy of a single pulse. If the pulse has a 
rectangular temporal profile, the distribution function 
will be 
 

 
 

for 0  t/1  1, where I1 is a dimensionless function 
of coordinates. 

The absorbed energy is generally small in 
comparison with the gas enthalpy, so the gas dynamic 
perturbations are also small. Thus the linearization of 
the gas dynamic equations is possible. For a single 
pulse and for a time interval of about 1, the following 
expansions and solutions for the dimensionless 
linearized equations of gas dynamics (1) can easily be 
obtained (note that in this case the notations used for 
the coordinates and the time are the same): 
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Here 
 

 
 

is a small parameter which characterizes the pressure 
perturbation scale, P0, 0, V0 are the pressure, 
density and velocity of the unperturbed gas, 
respectively, c is the speed of sound in the latter 
M = V0/ñ is the Mach number. 

It is obvious that for a time interval of about 
2  v, no heating sources are involved in the energy 
balance equations. But pressure perturbations occur in 
gas (as follows from Eq. (2) the magnitudes of other 
gas dynamic variables are smaller), and due to acoustic 
wave propagation they will in turn perturb the gas 
itself. It is clear that the perturbation scale of the gas 
dynamic variables 2 for is equal to . Assume that v is 
a characteristic time and denote the dimensionless 
period between pulses as  = 2

/y  1. To justify a 
subsequent comparison between CW radiation and 
pulsed radiation, it is necessary to choose the same 
mean power for both the repetitively pulsed mode and 

the CW mode: CW mode, cw v
0

1
I

P
 

   


 will be 

related as  = . 
To compare the CW and pulsed modes, we 

perform a series expansion over the small parameter of 
the gas dynamic variables, with due regard for this 
relation. Thus 
 

 
 

 (4) 
 

Substituting Eq. (4) into Eq. (1), one obtains 
the following set of equations for the main terms of the 
gas dynamic perturbations: 
 

 
 

  
 (5) 

 
Taking into consideration Eq. (2) and Eq. (3), the 
initial conditions for this set of equations will be 
 

 (6) 
 

For a pulse train, the gas dynamic perturbations 
from any n-th pulse for the time interval 1 will be 
described by a solution similar to Eq. (3). To find the 
perturbations for the time interval , the set of 
equations (5) with the following initial conditions has 
to be solved:  
 

 
 

 
 

 (7) 
 
Íåãå P1,n–1; 1,n–1; V1,n–1 designate the solutions of 
Eq. (5) for the (n–1)-th pulse. 

The set of equations (5) is solved using 
McCormack’s finite-difference technique8 to second 
order in the spatial coordinates and the time. The 
intensity distribution function I1 at z = 0 has the 
Gaussian shape I1 = exp(–x2 – ó2). The boundary 
conditions are specified at a relatively large distance 
from the heat sources (Ix, Iy = 3, 2; 4, 8; 6, 4). 
Extrapolation the solution from the adjacent internal 
grid points rather than using zero boundary conditions 
for 1, V1, P1 enables us to significantly reduce the size 
of the computational grid. An analysis shows that even 
for a relatively small grid size, Ix, Iy = 3, 2, the 
computational errors are less than 1% at times of order 
(5–7)v for all cases considered below: M = 0.5; 0.8; 
1; 2. It is further assumed that 2 = 10–3 sec, 
v = 10–2 sec/(3M) (a = 0.5 m, c = 300 m/sec), 
so the period  is equal 0.3 (for M = 0.5),  = 0.48 
(for M = 0.8),  = 0.6 (for M = 1.0) and  = 1.2 
(for M = 2.0). 

The propagation of laser beams with a small 
divergence is described by the so-called paraxial optics 
equation, which may be written in terms of normalized 
variables (together with the initial and the boundary 
conditions) as 
 

 (8) 
 

 (9) 
 

 (10) 
 
Here u is the complex field function, In = uu* is the 
intensity of the n-th pulse, F = 2n0a

2/L is the 
Fresnel number,  is the the wavelength, n0 is the 
refractive index of the undisturbed gas, N = L is 
the absorption (attenuation) parameter, N = (L/zT)

2 
is the blooming parameter of self-influence and 
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T 0 0/ ( 1) /z a n n    is the thermal blooming 

distance. 
The characteristic path length L will be assumed 

to be equal to zT, since the thermal blooming effect (at 
N = 1) is to be studied. An initially collimated 
Gaussian beam u0 = exp {–(x2 + y2)/2} will be 
considered. To find the solution of Eq. (8), Fourier 
series expansion and fast Fourier transform techniques 
have been used. 

This paper investigates the thermal blooming 
effects in the subsonic (M = 0.5,  = 0.3 and 
M = 0.8,  = 0.48) mode, the supersonic (M = 2.0, 
 = 1.2) mode, and the transonic (M = 1.0,  = 0.6) 
mode, which is the initial phase of the supersonic mode 
with linear perturbations. 
 

 
 

FIG. 1. 
 

Figure 1 presents numerical results for supersonic 
mode (M = 2,  = 1.2) at times t = , 2, 3 and for 
the quasistationary limit which will be explained in 
detail below. The Fresnel number is 5, N = 0.1. The 
constant density (left) and the constant irradiance 

(right) contours are shown, where the fixed irradiance 
levels are 0.9, 0.75, 0.5, 0.25 and 0.1 of 

max max{ }/ const.
xy

I I z   The position of the peak 

irradiance is marked by "x" and the Imax value is 
presented in the left upper corner. It can be seen that 
the irradiance perturbation pattern is already 
stabilized by the fourth pulse (the first pulse 
propagates through the undisturbed density field), 
although the density perturbation pattern is quite 
different from that which exists at the time t = n, 
where n á 1. The fixed density levels are shown by 
solid curves for 1 = 0.75, 0.5, 0.25 of 1max, by a bold 
solid curve for  = 0, and by the dashed curves for 
1 = 0.75, 0.5, 0.25 of 1min. .The development of a 
high density area on the side exposed to the flow after 
the second pulse and of two symmetrical high density 
areas in the Mach waves after the third pulse is clearly 
visible. A strong rarefaction of the gas on the opposite 
side of the beam results in forcing the radiation out of 
this area, and even for the second pulse the constant 
density contours are the crescent-shaped. 

The dependence of the peak intensity Imax on the 
distance z along the beam for many pulses (for the 
supersonic mode it is valid for all pulses starting from 
the second one) has the same cross section (z = const) 
as the absolute maximum, which we henceforth refer 
to as the focal cross section. The focal length is 
approximately zf = 1.0–1.2 for the subsonic mode 
(M = 0.5 and 0.8); it changes from z = 1.35 to 
zf = 1 for the transonic flow (M =1), and varies 
between zf = 1.2 and zf = 1.4 for the for the transonic 
flow (M =2). The results shown in Fig. 1 are 
presented for the cross section zphys = 1.2 z, which is 
similar to the focal cross section. 

Figure 2 shows the variation of Imax from pulse to 
pulse for different M numbers and fixed values of 
F = 5 and N = 0.1. The values of the peak intensity 
are presented for the thermal blooming distance 
zphys = zT. For M = 0.5 and M = 2, the peaks of 
intensity Imax are stabilized at levels close to the 
corresponding levels occurring in the quasistationary 
modes. The results are obtained for these modes by 
using another method which will be described below. 
For M = 0.8, the stabilization will be achieved after a 
slightly longer time than that shown in Fig. 2 while 
for M = 1, as expected, a continuous intensity increase 
is observed for all pulses, starting from the second. 

For all modes under consideration except the 
supersonic mode, the beam is mainly defocused during 
the propagation of the second pulse. Similar behavior 
of the peak intensity (a "dive" at the initial interval 
0 < t < V, then a growth up to a certain peak value 
and finally the stabilization at a stationary level) was 
observed earlier for unstabilized thermal blooming in 
the case of CW radiation that was switched on 
instantaneously (like a "step") or linearly during the 
time V.10 The results were obtained for a 
two-dimensional (slot) beam. In this paper a 
comparative analysis for repetitively pulsed and 
unstabilized CW modes has been carried out for 
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subsonic (M = 0.5 and 0.8), transonic (M = 1), and 
supersonic (M = 2) gas flows. The analysis is based on 
computations for three-dimensional (circular) 
Gaussian beams. Assume that the CW radiation is 
switched on instantaneously (like a "step"). The 
differences in the gas dynamic equations are as follows:  

in Eq. (5) the heat source function I(x,y.z) appears 
while the initial conditions (6) and (7) become equal 
to zero. The gas dynamic equations (5) and the 
paraxial equation (8) should be solved simultaneously 
at each time step, while for the repetitively pulsed 
radiation, Eq. (8) at a multiple of the pulse period. 

 

 
 

FIG. 2. 
 

 
 

FIG. 3. 
 

Figure 3 shows the peak intensity at the focal 
cross section maxmax{ }A

z
I I  as a function of time for 

the subsonic (M = 0.8) and the supersonic (M = 2) 
modes. In subsonic flow these curves (like constant 
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density and constant irradiance contours) are similar 
in behavior, with the peak of the repetitively pulsed 
radiation exceeding that of the CW radiation for the 
entirety of the unstabilized thermal blooming process. 
In the supersonic mode, the peak of the repetitively 
pulsed radiation is initially higher than that of the CW 
radiation, but from the time tphys = 2.3 V 
self-focusing of the CW radiation begins to dominate. 
An analysis has shown that for such combinations of 
the input parameters (M = 2, F = 5, N = 0.1), the 
chosen period ( = 1.2) is far from being optimal. The 
influence of the pulse repetition period (rate) on 
thermal blooming is generally difficult to investigate. 
In this paper, we have done so for the investigation has 
been performed for the quasistationary limit in which 
Eq. (8) is to be solved only once. 

Consider the procedure used for solving the gas 
dynamics equations in the quasistationary limit of a 
repetitively pulsed mode of radiation. 

Substituting x = x – t, y = y, t = t in the set 
of equations (5) and integrating the energy equation, 
one can obtain a relation between the perturbations of 
density 1 and pressure P1 (at least for a single pulse). 
Taking into account the newly introduced variables, 
the wave equation for P1 under the specified initial 
conditions can be written as 
 

 (11) 

 

 
 

 (12) 
 

Here t
*
 is the emission time for the pulse under 

consideration. It is convenient to choose it so that at 
the moment of the blooming n-th pulse emission, the 
coordinates x and x coincide, i.e. t* = –n. Summing 

up the solutions of Eq. (12), i.e. the function 
P1(x, y, z, 0), from n = 1 to nmax, which should be 
relatively large for the sum to be practically constant, 
the desired density perturbation 1 can be obtained. 

To solve Eq. (12), a Fourier transform technique 
(discrete Fourier series expansion) over the rather 
large grid area –1/2 < x, ó < +1/2 should be 
employed. The relationship between the harmonics of 
the intensity I1(x – n, y, z) and the pressure 
P1(x, y, z, 0) functions can be taken from the wave 
equation. Finally, we obtain 
 

 
 

 
 

 
 

 
 

 (13) 
 

To economize on computer memory and execution 
time, we suggest displacing the center of the grid by 
n/2 along the x axis from pulse to pulse. In doing so, 
the grid area size 1 can be reduced without any 
deterioration in terms of accuracy. The number of 
previous pulses which should be taken into 
consideration to find the perturbed pressure field using 
Eq. (13) can be determined by assumption that the 
acoustic wave originating from the region occupied by 
radiation at the time t* = –n, and having reflected 

from the boundaries of the grid area, could not reach 
the region where the radiation is at a time t = 0. If the 
last pulse contribution to the overall sum of the pressure 
perturbations is sufficiently large, contributions of the 
following pulses are computed using the approximate 
formula which may be derived from the known 
solution11 of Eq. (12) in the integral form 
 

 
 

 (14) 
 

 
 

As a result, for the quasistationary limit, the procedure 
for computing the main term in the density 
perturbation can be written as follows: 
 

 
 

 (15) 
 
where P1,n is calculated using Eq  (13) or (15). It 
should be noted that 1 in the quasistationary limit is 
actually a periodic function. Equation (15) describes 
this function at the end of the pulse period, i.e., at the 
moment the next blooming pulse is emitted for which 
a solution of Eq. (8) is constructed. 

Let us examine the results of the thermal 
blooming calculations. The general feature of the 
quasistationary mode is the periodic behavior  
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of density perturbations in the thermal trace, shown in 
Fig. 1. In some cases it results in the formation of 
corresponding local intensity peaks in the thermal trace. 
Figure 4 shows the peak intensity Imax as function of 
the period  for three situations: a) M = 2, F = 5, 
N = 0.1; b) M = 0.8, F = 5, N = 0.1; 
c) M ` 1, F = 5, N = 0. The distance z = 1.2 
along the beam is chosen for calculations close to the 
focal length in most instances. The purpose of our 
investigation was to find the periods for which 
self-focusing was the greatest (for example, near the 
peak). The minimum values of  used for calculations 
are  = 0.25–0.3. At  = 0, the peak intensity values 
obtained in the calculations of stationary thermal CW 
blooming in the specified gas dynamic modes have been 
used. The period between pulses 2 = 1.8v is optimal 
for the convective mode (c), 2 = 2v is optimal for the 
supersonic mode (a) and 2  0.6v is optimal for the 
subsonic mode (b). A substantial decrease of the peak 
intensity Imax as the pulse period increases is due to a 
peak intensity bifurcation in the subsonic mode. 
 

 
 

FIG. 4. 
 

In conclusion it should be noted that for the 
unstabilized state of repetitively pulsed radiation, the 
thermal blooming effect has an extremum (e.g., at the 
intensity peak and its vicinity), and the maximum 
intensity can considerably exceed the initial value as 
well as the corresponding value for the quasistationary 
limit. Variation of the period between pulses allows 
the maximum increase of the intensity peak to be 
achieved in th'e convective, subsonic and supersonic 
gas dynamic modes. 
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