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A correct (Foucalt) definition of the resolution is given in this paper. This concept of 
the resolving power of an optical system is then used for optimal correction of the images 
of objects observed with an optical system through a turbulent atmosphere, i.e., under 
conditions of random refraction along the viewing path. 

 
 

INTRODUCTION 
 

Assessment of the quality of optical systems 
working in a turbulent atmosphere with random re-
fraction is one of the most important problems in 
atmospheric optics6. The Foucalt resolution is the most 
widely used criterion for assessing the quality of 
imaging systems, including optical ones. It is de-
fined1–5 by the solution to the equation 
 

 (1) 
 

where G is the resultant modulation transfer function 
(MTF) of the imaging system, K is the threshold 
contrast detectable by an image analyzer, and v is the 
spatial frequency. 

It is pertinent to mention here some specific defi-
nitions of the resolution: objective resolution, which 
according to Ref. 5 corresponds to the case when 
 

 
 

limiting resolution1, where 
 

K = 0; 
 

visual resolution1, where 
 

K = Kvis. 
 

Íåãå Mthr is the threshold value of the signal-to-noise 
ratio (SNR),  is the relative value of the r. m. s. noise 
level at the output of the imaging system, and Kvis is 
the threshold contrast discernible by a visual analyzer 
(according to Selvin4, Kvis = 0.02). 

In the general case11 one has 
 

 
 

where KN = Mthr  is the component of the threshold 
contrast due to noise at the imaging system output. If 
one takes into account the contrast factor of the im-
aging system, one obtains KN = Mthr, where  is the 
contrast coefficient of the latter11. 

It is quite obvious that the definition of the 
resolution is incorrect, since Eq. (1) can have several 
solutions and hence the resolution thus defined may be 

ambiguous. Such a situation can actually occur in 
practice. An example of this is described in Ref. 2, and 
concerns a photographic system which uses an objec-
tive with a centrally obstructed aperture. In addition, 
the same situation occurs in aerial mapping cameras 
due to target displacement during an exposure2,4. In 
these situations, following Fivenskii4, the low-
est-frequency root of Eq. (1) is taken to be the reso-
lution, with the rest of the frequency range being 
considered to give "false resolution"; that is, 
 

 (2) 
 
However this definition of the resolution is also faulty. 
Thus, for example, it follows from Eq. (2) that if G = 
K in the frequency range [0, ],  where   > 0, the 
resolution will be zero. But this is unacceptable, 
because the equality G() = K() at some frequency  
means that this frequency is in fact still resolvable2,16. 
In that case, the resolution is no lower than ,  and 
hence differs from zero. Moreover, Eq. (1) may have no 
roots at all, and as a consequence the resolution simply 
not be defined, which contradicts the requirements for a 
figure of merit, since such a criterion must be always 
expressible in terms of a number or a function9. 
 

THE CORRECT FORMULATION OF THE 
FOUCALT RESOLUTION CRITERION 

 
As shown in Refs. 2 and 16 the relationship 

 

k0G()  K() 
 

is valid in general, for a resolved frequency , where 
k0G  is the contrast of a sinusoidal resolution target at 
the imaging system output, and k0 is the inherent 
contrast of the target. The latter is included for the 
sake of generality. 

Let us also introduce the continuously resolv-
able frequency along with simply resolvable one. 
This variable we define as the resolved frequency  
below which all frequencies, except for negative 
ones, are resolvable, i.e., if k0G()  K(), then 
k0G()  K()for any 0    . 
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It is natural therefore to define the resolution as 
the maximum resolvable frequency, which is com-
pletely consistent with the meaning of resolution, and 
with the experimental technique described in Ref. 17. 
The foregoing can be formally written as follows7: 
 

 (3) 
 

But even this formulation lacks generality. 
Firstly, as follows from expression (3), the limiting 
resolution, corresponding to K = 0 (Ref. 1), will be 
infinite for any imaging system, although it is limited 
by the first root of the equation G() = 0, as can be 
shown using Eq. (2). Secondly, the set on the 
right-hand side of Eq. (3) may be empty because of 
low inherent contrast or high threshold contrast. As a 
result, the resolution may turn out to be indetermi-
nate, since the concept of an "exact upper bound" is 
inapplicable to an empty set8. 

In our of view, the following expression gener-
alizes the definition (3), and at the same time is free of 
these drawbacks: 
 

 (4) 
 

where  is the Lebesgue measure. 
This is a correct definition of resolution, in that the 

resolution calculated using Eq. (4) exists and is unique 
for any imaging system. This follows from the fact that 
the set A on the right hand side of Eq. (4) is convex, 
according to the definition of the continuously resolv-
able frequency, and is thus only one of the two sets18 
 

 (5) 
 

which are Lebesgue-measurable8. If the set A  0 (is not 
empty), then by virtue of (5) one can replace the symbol 
 in equation (4) with "sup". Moreover, if 
k0G + K > 0 everywhere on the positive spatial fre-
quency axis, then Eqs. (3) and (4) become equivalent. 

It should be noted here that since the imaging 
(MTF and threshold contrast) are in general anisot-
ropic, Eq. (4) should be considered to be the system 
resolution in the direction  (directional resolution), 
 

 (6) 
 

while the total resolution, according to Ref. 10, can be 
written as 
 

 
 

 (7) 
 

where G() = T(cos, sin); T(x, y) is the re-
sultant two-dimensional MTF of the imaging system, 
and  is the orientation angle of the sinusoidal reso-
lution target1. 
 

If the imaging capabilities of a system sire iso-
tropic, Eqs. (6) and (7) are then identical to one 
another and to Eq. (4). 
 

SOLUTION OF OPTIMIZATION PROBLEMS 
 

Any imaging system will always have some 
probability that its full resolution will actually be 
realized2. The value of this probability, which is a 
function of threshold contrast3, will simply be called 
the resolution probability RP. Of two different im-
aging systems, the one with the higher value of RP 
must naturally be considered the better. It is therefore 
reasonable to solve the problem of optical image 
correction by maximizing the RP for any given reso-
lution value. In particular, because of the monotonic 
behavior of RP as a function of threshold SNR12, one 
can reformulate the problem of optimal image cor-
rection as maximizing the threshold SNR for a given 
value of imaging system resolution12. 

In our view, this problem is of particular interest, 
and we shall therefore analyze it for fairly general 
imaging systems, including optical systems operating 
in a turbulent atmosphere, i.e., under conditions of 
random refraction. 
 

ONE-DIMENSIONAL CASE 
 

Let the resolution of a system be 
 

 
 

In the most practical case, with Mthr > 0, one has 
 

 (8) 
 

For a one-dimensional model of imaging system 
operation, with the noise being a spatially stationary 
zero-mean random process, one has 
 

 (9) 
 

where h  and   are the optical transfer functions 
(OTF) of the distorting and correcting filters, re-
spectively, S is the spectral density of the noise (a 
nonnegative, even function15), and Â is the back-
ground in the resolution target image. 

For opto-atmospheric systems with long enough 
temporal averaging, one can write6 
 

 
 

where ah
  is the OTF of the turbulent atmosphere 

whose influence on the beam bearing the image of the 
observed object may be modeled with a linear (iso-

planatic) low-frequency filter; 0h
  is the OTF of the  
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receiving aperture of the system, S is the spectral 
density of fluctuation in the refractive index of the air, 
which quantitavely models the random refraction. 

Based on Eqs. (5), (8) and (9), this optimization 
problem can be reduced to a search for the maximum of 
the functional 
 

 (10) 
 
assuming that 
 
1) R0 > 0; 
2) H, , S are nonnegative even functions everywhere 
on the frequency axis; 
3) H,  > 0 on [0, R0); 

4) 0 ( ) ( ) .S d




        (11) 

 

Íåãå 
2
;h h   2 .    The quantity 0k B I  in this 

case has the physical meaning of the minimum SNR 
over the whole range of continuously resolvable fre-
quencies, and is thus the maximum possible threshold 
SNR at which the resolution R0 is obtained for a 
system with fixed characteristics H, . 

Making use of a series of simple inequalities 
 

  

 

 

 
 
one finds that the maximum of the functional (10), 
taking into account the constraints (11), is equal to 
 

 
 

and is reached when 
 

 (12) 
 

Thus, the maximum threshold SNR, at which some 
given value of the objective resolution can be achieved 
is 0 max .k B I  One can see from (12) that the OTF of 

the correction filter is the reciprocal of the OTF of the 
distorting filter in the frequency range (–R0, R0), and 
is zero outside it. 
 

TWO-DIMENSIONAL CASE 
 

In this case the optimization problem is reduced to 
the .problem of finding a maximum of the functional 

 (13) 
 
with 
 

1) 0R  > 0; 
 

2) H, , S nonnegative even functions everywhere on 
the frequency plane; 
 

3) H(x, y)(x, y) > 0, 2 2 2
x y 0 ;R     (14) 

 

4) x y x y x y0 ( , ) ( , ) .S d d
 

 

            

 

The quantities 0,R  H, , S, 0k B J  have the same 
meanings as in the one-dimensional case. 

Using expression (14) one obtains 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  
 
Then it follows that the maximum of the functional 
(13) under the conditions (14) is equal to 
 

 

  
 
and is reached when 
 

 (15) 
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Thus the maximum threshold SNR at which the value 

0R  can be attained is 0 max .k B J  One can see from 

(15) that the OTF of the optimal correction filter is the 
reciprocal of that of the distorting filter within a 
region of radius 0R  whose center coincides with the 
coordinate origin, and is zero outside this circle. An 
example of a nonnegative band-limited, finite func-
tion, whose Fourier transform has no nulls. It is 
sometimes useful to image different parts of an object 
at different resolutions13. To retain the possibility of 
optimal filtering, the OTF of the distorting filter must 
then never vanish in the corresponding frequency 
range (see Eqs. (12) and (15)). However, it is quite 
obvious that this condition can be violated if the 
objective resolution of an arbitrary distorting filter 
(receiving aperture of an optical system) varies over a 
wide enough range. Since the scattering functions of 
distorting filters of many types of imaging systems, for 
example those that use penetrating radiation14, are 
nonnegative, finite and band-limited, it is practical to 
search for a function that has the aforementioned 
properties and whose Fourier transform is nowhere 
zero. 

An example of such a function is 
 

 
 
where a is a parameter. 

Another example is the function (x) = f(x)  
(f(–x), where the asterisk denotes convolution. In 
contrast to the previous function, this one is even. The 
Fourier transforms of these functions are 
 

 
and 
 

 
 
where z = 2a. 

In the two-dimensional case one can use the 
product of these one-dimensional functions. The fore-
going functions can be used for apodized (partially 
obstructed) receiving apertures of opto-atmospheric 
systems. The apodization, in turn, can provide for 
optimal correction of images of objects observed 
varying resolution. 
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