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We propose a parametrically optimal filtering method for the reconstruction of the 
true intensity of the horizon from smoothed remote sensing data. The results of the re-
construction modeling, and of reconstruction of the true horizon brightness from ex-
perimental data are presented.  

 
 

The finite spatial resolution of a telescopic ra-
diometer causes smoothing of the horizon brightness 
u(z) when it is scanned from space (z is the height of 
the sight line above sea level), and as a result, the 
device records a smoothed brightness 
 

 (1) 
 
Here k(z) is the radiometer sesitivity function over the 
field of view. Because the distance ( 2000 km) from 
a spaceborne observer to the horizon is so large, 
smoothing can be so strong that actual brightness u 
must be reconstructed from the smoothed signal v by 
solving equation (1). This problem is ill-posed, and 
can be solved only approximately using regularization 
techniques. The literature contains regularization 
methods by Tikhonov1–3 and by Turchin4–6. 

In this paper, a parametrically optimal filtering 
method7 is proposed for solving the problem (1). This 
method can be considered a variant of the Wiener 
optimal linear filter8. 

Denote the Fourier transforms of the functions 

u(z), v(z) and k(z) by ( ),u   ( )v   and ( ).k   In the 
parametrically optimal filtering method, we seek a 
regularized solution whose spectral density u ( )   
takes the form 
 

 (2) 
 
where r(, ) is a known function of the wavenumber 
 and parameters  = {1, , N}.The values of these 
parameters are found by minimizing the functional 
 

 (3) 
 

where E denotes the expectation value, and ( )u   is 
the spectral density of the actual (but unknown) 
brightness. It is assumed that possible values of ( ),u   

and likewise ( ),v   form a statistical ensemble. As 

shown in Ref. 7, by varying q with respect to jj one 
obtains N equations in the parameters j, with coef-
ficients that depend on the variances of the spectral 

densities of the actual measured signal ( ) ( )k u    and 
the measurement error 
 

 (4) 
 

The specific form of these equations depends on 
the function r(, ) chosen. 

The main difference between existing regulari-
zation techniques and the one suggested here is that in 
the latter, the solution we seek must be most close to 
the actual solution in the least squares sense, while the 
former techniques search for the smoothest solution. 
Besides greater freedom in choosing the statistical 
ensemble, the technique suggested in this paper has the 
further advantage of a definite latitude in selection of 
the reconstruction operator r(, ). For example, in 
Ref. 7 one can find the functions 
 

 (5a) 
 

 (5b) 
 

 (5c) 
 
where 
 

 (6) 
 

and the bar over k  denotes the complex conjugate. 
Expression (5c) includes, as a special case, Tik-

honov and Turchin’s operators. 
Numerical simulations have shown that at high 

noise levels (10–3 and higher) relative to the maximum 
signal, Eqs. (5a) and (5b) provide for better recon-
struction, while at low noise level, Eq. (Sc) is to be 
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preferred. Examples of reconstruction using the operator 
(5c) (N = 1) are presented below. It is assumed that the 
noise and useful signal in the measured profile can be 
discriminated in the spectral domain: 
 

( ) ( ) ( )k u     .  for ,    

 

( ) ( ) ( )k u     n  for ,    

 

where  is the discrimination wave number, and ( )   
is white noise: 
 

 = 0,  
 
In that case, one obtains the representation 
 

 
 
and the parameter  is determined by the equation 
 

 
 

Here, the function ( )v   as well as the parameters  
and  are determined on the basis of a single measured 
profile v(z). 
 

 
 

Fig. 1. 
 

Figure 1 presents the results of numerical simu-
lations of the smoothing process and subsequent re-
construction of the smoothed signal. The simulations 
have been carried out in accordance with the scheme 
 

 
 
The arrays u(z1), (z1) have been defined on the lattice 
z1 = iz, z = 0.5 km. Random errors (z1) were 
modeled by a stationary uncorrelated process, with 
variances 
 

 
 

It should be noted that e is not the same as the 
quantity  introduced earlier. Parameter  depends not 
only on e, but also on the Fourier transform algorithm 
used. In our calculations we used the fast Fourier 
cosine transform. The kernel k(z) of the integral 
operator was modeled by a Gaussian function, 
 

 (7) 
 

Figure 1 illustrates reconstruction using 
 = 4 km and e/umax = 3  10–4. It can be seen from 
this figure that all large scale details of the profile u(z) 
are restored, but high frequency details are lost. The 
high dynamic range of the reconstruction is noteworthy. 
It is seen, for example, that the quality of reconstruction 
is the same in the altitude range from 60 to 90 km as in 
the lower atmosphere, despite the fact that the signal is 
a factor of 103 lower than the maximum. 
 

 
 

Fig. 2. 
 

Figure 2 shows a reconstruction of the brightness 
of the daytime horizon at  = 1.25 m within the 
molecular oxygen emission band. The measured and 
smoothed profile was obtained with the FAZA tel-
eradiometer10. The sensitivity of the device over its 
field of view is described by Eq. (7) with  = 1.6 km. 
As is seen from this figure, the effect of reconstruction 
are more significant in the lower atmosphere, where 
the brightness undergoes strong variations. In the 
restored profile, one can also see a weak secondary 
maximum of oxygen emission at 80 km altitude, which 
is missing from the measured profile, the main 
maximum being at 40–60 km. 
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