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We have developed a method of solution of radiative transfer equation for the case of a point 
isotropic source, based on the spherical harmonics method. The convergence of the method has been 
improved by subtracting from the general solution of the small-angle component containing all the 
peculiar features of the solution. Thus, the solution is obtained for remaining smooth function 
containing no singularities. To maintain the stability of solution with the increase of the optical 
depth, scaling is applied. The numerical calculations made clearly show the physical idea of the 
small-angle approximation, i.e., the neglect of dispersion of the scattered photon trajectories and 
backscattering. 

 

Introduction 

To solve the problems on recovering the images, 
distorted by a turbid medium such as the atmosphere 
or water depth, it is often sufficient to determine the 
point spread function (PSF) or the optical transfer 
function (OTF) of the system,1 i.e., to solve the 
radiative transfer equation (RTE) for the case of a 
point isotropic source (PI source). The obtained 
distribution of the medium brightness illuminated 
with a PI source, by optical reciprocity theorem,2 
corresponds to the distribution of illumination with a 
point unidirectional source (PU source) and, hence, 
can be used in solution of the problems dealing with 
laser ranging. Generally speaking, at present the 
boundary-value problem of RTE for a plane layer 
should be considered solved. An important task is the 
development of analytical and numerical methods of 
solution of three-dimensional radiative transfer 
problems.3 Therefore, the calculation of radiation 
field from a PI source is considered the simplest case 
making it possible to analyze the main issues of the 
three-dimensional problems. 

These problems can be divided into two large 
groups: (1) the radiation fields of wide beams in the 
medium where one dimension is much larger that two 
others, and (2) the radiation fields created by 
spatially finite sources. For problems in the first 
group there is quite an efficient approximation,4 
whereas in the second group the estimate can only be 
made in small-angle approximation5–7 of the field 
scattered in the forward direction and only for small 
optical depths. In Ref. 8 an approach was proposed to 
solving these problems, based on subtraction of direct 
and singly scattered components and subsequent RTE 
solution for a Fourier transform of the initial 
function, which improves the convergence of the 
method. However, it does not solve all the problems 
associated with the presence of peculiarities of 
solution near the source. In such an approach, we 
determine only OTF of a layer of the turbid medium, 

whose knowledge alone is insufficient for 
reconstruction of the image, obtained, e.g., from 
satellite, in which case the image is formed by 
angular scanning of the object. 

In the case of a PI source, the brightness of 

radiation field L at the point r along the direction Î  

is spherically symmetrical: 
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where ε is the extinction coefficient; 

ˆ ˆ( , )x ′l l  is the 

scattering phase function; and Λ is the single 
scattering albedo. Here and below, all caped symbols 
denote unit vectors. 

1. Method of spherical harmonics  

The method of spherical harmonics (SH) for 
RTE solution essentially consists in representation of 
all functions entering the equation by series 
expansion over Legendre polynomials9: 
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With the use of Legendre polynomials it is 
possible to separate variables based on the addition 
theorem: 
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are spherical functions; ϕ is the azimuth angle of the 

vector l̂  in the coordinate system chosen. 
Substitution of Eq. (3) in RTE and some 

manipulations,9–11 taking into account the properties 
of the Legendre polynomials, give the following 
system of equations: 
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Solution of equation (5) can be written as9: 
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 is the modified Bessel function of 

purely imaginary argument of the second kind (or 
McDonald function). 

Using the properties of McDonald function, we 
obtain the system of equations: 
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Since the solution of infinite system of equations 
is impossible, for practical solution it is made finite 

by assuming that all coefficients ( ) : ( ( ) )0kk N C r∀ > ≡ . 

The number of terms to be accounted for depends on 
the properties of the medium, shape of the scattering 
phase function, and other factors. Thus, we obtain 
 

 ( ) .1 0NA +
ν =  (8) 

Obviously, the Eq. (8) is the equation of 
(N + 1)st power and, correspondingly, it has (N + 1) 
roots. It can be shown10 that approximation of odd N 
is better because it leads to (N + 1)/2 roots identical 
in absolute value and opposite in sign. In accordance 
with the boundary condition (2) at infinity, the roots 
cannot be negative, which leaves just (N + 1)/2 
positive roots. For use of recursion equation (7) it is 
necessary to know A0, which can be set to unity since 
any value leads to multiplication of the rest Ak 
coefficients by A0. Different roots of Eq. (8) 
determine linearly independent solutions. Therefore, 
the general solution can be written in the form 
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The constant coefficients aq are determined from 
the boundary conditions. However, the approximate 
solution cannot satisfy the exact boundary 
conditions, thus necessitating the use of approximate 
conditions. The boundary conditions in Marshak form 
are the best ones: 
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Substitution of the expression (10) in Eq. (9) 
yields 
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that is the system of (N + 1)/2 linear equations with 
(N + 1)/2 unknowns aq. 

However, solution for the case of a PI source 
has peculiarities not only in angle, but also in radius, 
requiring consideration of infinitely many terms of 
the series, both in angular and spatial variable, 
rendering the problem (11) mathematically ill-posed 
for any finite N. We will consider the case of 
nonscattering medium, with Λ = 0 and ε = κ. In this 
case, equation (7) can be written in the following 
form 
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whence ( )( )1k kA P
+

ν ≡ κ ν  are the Legendre 

polynomials. Solution for this case is known and 
reads: 
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where we have used the expansion of McDonald 
functions of half-integer order into a series12: 
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This requires that all sums over q equal zero for 
all n ≠ 1 when N → ∞. This statement is paradoxical 
because it is incorrect to pass to the limit N → ∞ for 
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description of local spatial peculiarity. We can 
contend that this case requires nontrivial passage to 
the limit, analogous to the quasi-classical 
approximation known from the literature.12 

 

2. Modification of the spherical  
harmonics method 

Let us introduce the new function 

 ( ) ( ) / .2k kC r Y r r=  (15) 

In this case, RTE can be written as follows 
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In solution of the last equation in small-angle 
modification of spherical harmonics method (SHM),7 
the substitution  
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is used and solution takes the form7: 
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where the scattering phase function is taken in 
Henyey-Greenstein approximation xk = gk or bk = 
= ε(1 – Λgk). 

In formula (17) the SHM takes into account 
that, when peculiarities with respect to angle are 
present in solution L(r, μ), its angular spectrum 
Yk(r) slowly decreases starting from the index k, 
which allows7 one to introduce continuous function 
Y(k, r) coinciding at integer-valued points with 
Yk(r). The function Y(k, r) is a slow, monotonically 
decreasing function of k, which precisely permits to 
admit the approximation (17). 

We will use the representation (17) to transform 
the second term in equation (16) and write 
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Now, Eq. (16) can be written in the following 
form 
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which is equivalent to RTE for the case of a PI 
source under normal incidence upon the layer, but 

with much stronger forward-peaked scattering phase 
function  
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Taking into account that, in passing from 
equation in the spherical geometry to the equation in 
a plane geometry, the scattering phase function of 
the medium has been stronger forward-peaked 
function of the angle (Fig. 1), that is physically 
equivalent to account for the angular peculiarities of 
the solution, the number of terms of the series needed 
for describing the solution increases from hundreds to 
thousands. The matrix of this system becomes weakly 
defined, making the equation practically insolvable. 
 

 
Fig. 1. Dependence of the expansion coefficients of 
scattering phase function on the number k. 

 
On the other hand, such a transformation 

stronger distorts the dependence of harmonics on 
distance at small optical depths, where the angular 
distribution of the brightness of low scattering orders 
has the following specific features11: the peculiarity is 

of the form 
2

1 ˆ ˆ( ),
r

δ −l r  in zero scattering order, 

2

1

1r − µ

+ ln[r2(1 – μ
2)] in the first order of 

scattering, ln[r(1 – μ) + lnr] in the second order, and 
no peculiarities are present in the third and higher 
orders of scattering. Representation (20) smoothes 
out the peculiarities of brightness pattern in the first 
and second orders of scattering. 

To eliminate this effect, we will present the 
solution in the form of the sum: 
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where the solution in small-angle modification of 
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Since the small angle part of solution in 
expression (21) contains all peculiarities of the exact 

solution,6,7 then ( , )L r µ
�  is a smooth function. 

For further analysis, we will pass to the matrix 
form of RTE (20), analogous to that presented in 
Ref. 13: 
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and i is the running index of matrix elements and 
columns of the system (22). 

The representation (21) leads14 to appearance of 
residual terms in the right-hand side of 
equation (22), namely 
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or in the matrix form: 
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while the SHM-based system of equations (22) 

assumes the form 
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appear due to the use of (N + 1)st term of small 
angle approximation. 

The boundary conditions also can be written in 
the matrix form14: 
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The matrix of the system consisting of several 
hundred equations is weakly defined that leads to 
increase of the calculation error with the growth of 
the optical depth. This effect is eliminated through 
introduction of scaling,13 which allows the solution 

to remain stable with the growth of the optical 
depth. As a result, the system of equations in the 
matrix form is as follows14: 
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This task was solved using TheMathWorks‚ 
Matlab software. To assess the accuracy of the 
obtained solution, comparison against single 
scattering case was made. In Fig. 2, solid line shows 
backscattering calculated with the algorithm 
proposed, while dashed line shows that calculated in 
single scattering approximation for parameters of the 
medium being as follows: g = 0.8, Λ = 0.8, and 
τ = 0.1. For achieving an acceptable accuracy the 
calculations used 1501 Legendre polynomials. 

 

 
Fig. 2. Comparison of the backscattering brightness 
calculated using the method proposed and with that 
calculated using single scattering approximation for small 
optical depths τ = 0.1. 

 

Shown by solid line in Fig. 3 are results 
calculated by the algorithm proposed while the 
dashed line shows that calculated using small-angle 
modification of the spherical harmonics method for 
forward scattered field with the parameters of the 
medium being as follows: g = 0.8, Λ = 0.8, and τ = 10 
(here, the logarithms of the corresponding functions 
are plotted). From Fig. 3 it is seen that the solution 
for forward scattered radiation converges faster; 
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therefore, much less harmonics (N = 301) can be 
used in the expansion. 

 

 
Fig. 3. Comparison of brightness calculations of radiation 
field in the forward hemisphere of directions against small 
angle modification of spherical harmonics method for τ = 10. 

3. Optical transfer function of a layer  
of the medium 

Optical transfer function of an ideal optical 
system that views through the depth of a turbid 
medium is a Fourier transform of the irradiance 
distribution E(ρ) over the plane containing the image 
of a luminous point located on the optical axis of the 
system: 
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analysis; and ρ is the distance from the optical axis 
to the point of the image in analysis plane. 

To introduce the OTF of a vision system, the 
condition of image invariance (isoplanarity) with 
respect to shift of the object in the object plane must 
hold, which, in the general case, is not valid in 
recording angular brightness distribution at a single 
point fixed in space.15 Since to determine the OTF, a 
luminous point at the optical axis is taken as an 
object, then L(r, μ) is the distribution of brightness 
from a PI source, determined from the boundary-
value problem (1). A displacement of the point in the 
object plane leads to change of r, thereby violating 
the isoplanarity condition. However, solution of 
practical problems requires more or less accurate 
fulfillment of the isoplanarity condition, therefore, it 
is possible to introduce the conception of isoplanarity 
zones,15 within which the subsequent OTF analysis is 
performed. 

Substituting the solution in the form of Eq. (3) 
into formula (29) for the OTF, we obtain 
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The system field of view usually substantially 
exceeds the object sizes; therefore in the range of 
small angles the Legendre polynomials can be 

replaced with Bessel function 0(cos ) ( ),kP J kθ ≈ θ  and 

so, under assumption of axial symmetry of the 
system, the integral in Eq. (30) can be transformed 
as follows: 
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where, having in mind the small angle 
approximation, we used the assumption that 

sin tan / ,sθ ≈ θ ≈ θ = ρ  which is quite usual for the 

paraxial optics, and took into account that in the 
region of small angles the corresponding terms of the 
series (3) have large numbers. 

The last expression leads to the formula for the 
OTF of a vision system in the following form 

 ( ) ( ).
2

4
k ps

O
T p C r

=

π

=  (32) 

Figure 4 compares the calculated normalized 
OTF of a vision system obtained using the solution, 
described in this paper, with that obtained using 
small-angle approximation.  

 

 
Fig. 4. Normalized OTF of a layer of the turbid medium. 

Solid lines in the figure show OTF values 
obtained by the method proposed, and dashed lines 

(31)
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show the results obtained in small-angle 
approximation. The calculations assume that s = 1. 
Upper plots correspond to the optical depth τ = 1, 
and the lower plots to τ = 4.  

It is seen that inclusion of the dispersion of 
scattered photon trajectories reduces OTF values in 
the region of low spatial frequencies. 

Conclusions 

1. The method of RTE solution proposed makes 
it possible to determine the brightness field created 
by a PI source taking into account multiple 
reflections within the full solid angle. Separation out 
of the small-angle component allows one to solve the 
problem by numerical methods because the remaining 
function is smooth and does not contain peculiarities. 
 2. The analysis performed has shown the 
importance of the account of spatial and angular 
peculiarities of the solution in the cases of radiative 
transfer problems with arbitrary three-dimensional 
geometry. 

3. It has been found (see Fig. 3) that the 
brightness of radiation field calculated in the small-
angle approximation overestimates somewhat the 
field of forward scattered radiation in the region of 
“large” (in excess of 30°) angles, primarily because 
small-angle approximation neglects the dispersion of 
scattered photon trajectories. 

4. The influence of dispersion of scattered 
photon trajectories on the OTF (see Fig. 4) is 
evident at small frequencies, reducing its values. 

 

References 

1. R. Gonsales, and R. Vuds, Digital Image Processing 
(Tekhnosfera, Moscow, 2005), 1072 pp. 
2. K. Keiz and P. Tsvaifel, Linear Transfer Theory 
[Russian translation] (Mir, Moscow, 1973), 362 pp. 
3. A. Marshak and A. Davis, 3D Radiative Transfer in 
Cloudy Atmospheres (Springer, 2005), 686 pp. 
4. K.F. Evans,  J.  Atmos.  Sci.  55,  No. 3,  429–446  (1998). 
5. E.P Zege, A.P. Ivanov, and I.L. Katsev, Image Transfer 
in Scattering Media (Nauka i Tekhnika, Minsk, 1985), 
 240 pp. 
6. V.P. Budak and A.V. Kozelskii, Atmos. Oceanic Opt. 18, 
No. 1, 32–37 (2005). 
7. V.P.Budak and S.E. Sarmin, Atm. Opt. 3, No. 9, 898–
903 (1990). 
8. A.I. Lyapustin and T.Z. Muldashev, J. Quant. Spectrosc. 
Radiat. Transfer 68, No. 1, 43–56 (2001). 
9. B. Devison, Neutron Transport Theory (Atomizdat, 
Moscow, 1961), 520 pp. 
10. G.I. Marchuk, Methods of Calculation of Nuclear 
Reactors (Gosatomizdat, Moscow, 1961), 667 pp. 
11. E.E. Petrov and L.N. Usachev, in: Theory and Methods 
of Calculation of Nuclear Reactors (Gosatomizdat, 
Moscow, 1962), pp. 58–71. 
12. E.T. Whittaker and G.N. Watson, A Course of Modern 
Analysis (Cambridge University Press, 1915). 
13. A.H. Karp, J. Greenstadt, and J.A. Fillmore, J. Quant. 
Spectrosc. Radiat. Transfer 24, No. 5, 391–406 (1980). 
14. V.P. Budak, A.V. Kozelskii, and E.N. Savitskii, Atmos. 
Oceanic Opt. 17, No. 1, 28–33 (2004). 
15. V.V. Belov and S.V. Afonin, From Physical 
Foundations, the Theory, and Modeling toward Thematic 
Processing of the Images Taken from Satellites (IAO SB 
RAS, Tomsk, 2005), 266 pp. 

 


