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In this study, we have realized and tested an algorithm of phase unwrapping from its gradient 
for the case of wave front dislocations present. The algorithm proposed is based on the complex 
exponential phase estimator proposed by D. Fried and the least squares method (LSM). In 
unwrapping the hidden phase, the algorithm does not require the localization and pair matching of 
the branch points and corrects for the errors of LSM smoothing. High accuracy of the algorithm has 
been demonstrated by simulating wave front conjugation under conditions of turbulent atmosphere, 
as an example. 

 

Introduction 
 

To unwrap the phase of an optical wave 

 U(r) = A(r) exp[iφ(r)],  (1) 

where U(r), A(r), and φ(r) are the complex amplitude, 
wave amplitude and phase, and r = r(x, y) is the 
two-dimensional vector, from the wave tilts measured 
with Hartmann sensors or shear interferometers,1 the 
least squares method (LSM)2,3 is widely used by 
analogy with the radar interferometry.2 The LSM 
produces smoothing4,5 and filtering since it deals with 
the potential part of the phase gradient vector and 
does not unwrap the so-called hidden phase6,7 
determined by the solenoidal component of the phase 
gradient.2,3,6–8 In the domain where the solenoidal 
part of the phase gradient is non-zero, ± 2πn phase 
jumps occur often due to noises.9 Filtering of these 
noises is carried out with the LSM.9,10 Nevertheless, 
if random, as well as regular optical fields propagate 
through random media, strong random spatial 
modulation of the intensity of propagated waves can 
occur. In such cases, the wave front dislocations arise11 
at the points where the intensity is close to zero, 
with the nonzero solenoidal component of the phase 
gradient vector being an indicator of such a situation. 
In this case, the use of LSM results in loss of valuable 
information on the phase. The phase of an optical wave 
can be written as a sum of two terms7: 

 φ(r) = φlmse(r) + φhid(r), (2) 

where φlmse(r) is the phase unwrapped by LSM, φhid(r) 

is the hidden phase determined by the solenoidal 
component of the phase gradient. 

The phase gradient, in the discrete representation, 
can be written in the following form5,7:  
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where i and k determine the pixel position in a two-
dimensional array of discrete phase values, d is the 
distance between neighbor grid nodes; ex and ey are 
the unit vectors. The indicator of the dislocations at 
a point is the change by ± 2π of the principal phase 
gradient value when circling about the point along a 
closed trajectory7:  

g(i, k) ⋅ exd + g(i + 1, k)eyd − g(i, k + 1)exd − g(i, k)eyd = 
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Positive and negative branch points of the phase 
appear by pair and are coupled via phase surface 
discontinuities. Having known the coordinates of  
the branch points, the hidden phase φhid(r)

7
 can be 

determined and thus the full phase can be estimated. 
Nevertheless, false phase disruptions can appear in 
calculating the hidden phase at the branch points5 due 

to the errors in determination of the paired points 
thus this lowering the efficiency of the algorithm.5,12,13 
  D. Fried has proposed the phase unwrapping 
algorithm based on the so-called exponential phase 
estimator he had introduced to estimate the phase 
surface from its local tilts, or gradient. A modification 
of this method allows, like the LSM, one to minimize 
the noise effect.10 The algorithm enables one to unwrap 
full phase φ(r) in its principal value, i.e., 

 

 φCEE(r) = P[φ(r)], (5) 

where P[…] means reduction of the parameter in 
parenthesis to the interval (−π, π] of the principal 
phase value. Then the principal phase value P[φ(r)] 
is unwrapped into the phase surface φ(r) using the 
information on the positions of branch points. 

The algorithm of unwrapping the phase φ(r) 
from its gradient g(r) using the complex exponential 
estimator proposed by D. Fried, along with LSM, is 
discussed in this paper. The peculiarity of the 

± 2π if the branch point is inside the circle, 

0 if there is no a branch point inside the circle.
  

(4)
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algorithm, in contrast to the complex exponential 
estimator, is that it does not require determination of 
the positions of phase branch points. 

 

Phase unwrapping algorithm 
 

The phase φ(r) unwrapping from its gradient g(r) 

is carried out in the following way. The D. Fried’s 

complex exponential estimator of the phase is applied 
to the preset array of the phase gradient g(r), which 
yields the array of complex numbers 

 χ(r) = A(r) + iB(r) = CEE[g(r)] = exp[iφ(r)], (6) 

where A and B are the real and imagine parts of a 
complex number; CEE[…] is the complex exponential 
estimator algorithm.10 As follows from Eq. (6), the 
complex numbers χ(r) are related to the wave phase 
by the equation 

 φCEE(r) = arg[χ(r)] = P[φ(r)].  (7) 

Equation (7) shows that the full phase φ(r) is 
determined in its principal value on the interval  
(–π, π]. Unwrapping of the phase, within the interval 
(–π, π], is carried out by the LSM. As a result, the 

smooth φlmse(r) phase is obtained. To estimate the 

hidden phase component, the following calculations 
are to be performed by Eqs. (6) and (2): 

 hidlmse( )/exp ( ) = exp ( ) ,i⎡ ⎤ ⎡ ⎤χ φ φ⎣ ⎦ ⎣ ⎦
� �ir r r  (8) 

whence 

 { }hid hid( ) arg exp ( ) .i⎡ ⎤φ = φ⎣ ⎦r r
� �  (9) 

As follows from Eqs. (8) and (9), the hidden 
phase component is determined for the principal 
phase value on the interval (−π, π] and contains the 
error of smoothing Δsm produced by the LSM4: 

 smhid hid( ) .φ = φ + Δr
�  

The full phase is obtained by summing φlmse(r) 
and hidφ�  components: 

 lmse hid( ) ( ) ( ).φ = φ + φr r r
�  (10) 

Thus, the phase φ(r) can be unwrapped from its 
gradient g(r). In determining the hidden phase, the 
information on locations of the branch points and 
phase surface discontinuities is not required. 

 

Numerical experiment 
 

We have checked the efficiency of unwrapping 
the optical wave phase by the method proposed in 
numerical experiments on propagation of a collimated 
Gaussian beam 

2 2

0(0, ) exp{– /(2 )}U U r a=r  (see 

Fig. 1) in a turbulent atmosphere with the use of 
simulation codes.5,13 

The conditions of wave propagation through a 
turbulent atmosphere are conveniently characterized 
by the index of a plane wave scintillation14: 

 2 2 7/6 11/6
0 1.23 ,

n
C k Lβ =  (11) 

where 2

n
C  is the structure characteristic of the air 

refractive index fluctuations, k = 2π/λ is the wave 
number; λ is the wavelength; L is the path length. 
According to Refs. 15 and 16, at 2

0β  > 1 the regime of 
strong intensity fluctuations occurs and the intensity 
distribution across the beam breaks into speckles, i.e., 
strong spatial amplitude modulation of the optical 
field occurs. Figure 2 shows the intensity distribution 
for the field U(r, L) propagated through a turbulent 
atmosphere (L = 1.5 km, a = 4 cm, λ = 1.06 μm, 

2

n
C = 7.7 ⋅ 10–14 m–2/3, 2

0 5).β =  
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Fig. 1. Normalized intensity distribution for the initial 
Gaussian beam. 

 

Let us make use of the wave front reciprocity.17 
If a forward propagated wave travels backward after 
its phase changed sign at the end of the path, 
[φ(r) → –φ(r)], then, in the beginning of the path, 
the back wave field takes the initial distribution. The 
change of phase from φ(r) to –φ(r) is equivalent to the 

U(r, L) field complex conjugation operation: U*(r, L) = 
= A(r)exp[–iφ(r)]. Hence, if the phase determined 
from the gradient measurements is incorrect at the 
wave front conjugation, then no initial field 

distribution will be obtained. 
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Fig. 2. Intensity distribution of a Gaussian beam propagated 

through the turbulent atmosphere, 2

0β =5. 
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Using the U(r, L) field modeled for the case of a 
turbulent atmosphere we have calculated, by Eq. (3), 
the phase gradient. The optical wave phase shown in 
Fig. 3 was obtained from the gradient with the use of 
the complex exponential phase estimator. 
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Fig. 3. Distribution of the phase of a Gaussian beam field 
unwrapped using the Fried’s complex exponential phase 
estimator.9  

 
As is seen from Fig. 3, phase values are in the 

(–π, π] interval, i.e., they bounded by the principal 
value. Analysis of the phase distribution shows that 
it contains wave front dislocations.  

Figure 4 presents the central parts of the intensity 
and phase distributions of the optical field U(r, L) 
with the wave front dislocations marked. The positions 
of the dislocations were obtained by Eq. (4). 

Phase unwrapping was carried out using the 
LSM. As was noted above, the method does not 
reconstruct the phase completely. The method does 
not unwrap the phase component caused by the wave 
front dislocations as well as the part of phase 
function caused by the smoothing error.4 The result 
of phase unwrapping from its principal value (see 
Fig. 4b) by the LSM is shown in Fig. 5. It is 
evidently a smooth distribution without phase 
discontinuities. 

The hidden phase component was obtained by 
Eqs. (8) and (9) by applying the complex exponential 
phase estimator and the LSM. The full phase was 
calculated by Eq. (10) (Fig. 6) as the sum of the 
obtained components and then it was used in forming 
the reversed wave  

 { }*

lmse hid( , ) ( )exp – ( ) ( ) .U L A i⎡ ⎤= φ + φ⎣ ⎦r r r r
�  (12) 

While this wave propagates backward through 
the medium with the same inhomogeneities as in the 
case of the forward propagation, the initial intensity 
distribution of the Gaussian beam is completely 
reconstructed (see Fig. 1). If one takes into account 
only the φlmse(r) phase obtained with the LSM, then 
the optical field is not restored by the wave U*(r) = 
= A(r)exp[–iφlmse(r)] propagated backward (Fig. 7). 
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Fig. 4. Intensity (à) and phase (b) distributions in the 
central part of the beam cross section with the marked 
branch points of the phase. 
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Fig. 6. Phase distribution calculated by Eq. (10). 
 
The fact that the reversed wave (12) formed completely 

unwraps the initial Gaussian distribution of an optical 
beam after being propagated backward is an evidence 
of the exact phase unwrapping by the algorithm 
proposed. 
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Fig. 7. Intensity distribution of a Gaussian beam after 
backward propagation if conjugating only the phase 
unwrapped using the LSM. 

 

Conclusion 

 

The phase unwrapping algorithm has been realized 
for the case of phase front dislocations. The algorithm  
 

is based on the D. Fried complex exponential phase 
estimator10 and the least squares method. In contrast 
to Ref. 10, it does not require localization of branch 
points and determination of their parity and corrects 
for the errors introduced in smoothing by the least 
squares method. The algorithm does not allow the 
phase to be unwrap in the case of screw dislocations 

since the topology of such dislocations assumes phase 
jumps exceeding 2π, because the algorithm proposed 

calculates the hidden phase hidφ�  only within the 

limits of the principal phase value (9). However the 
number of such jumps is negligible for the considered 
types of problems and does not influence the 
efficiency of the algorithm. 
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