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We present some results obtained by numerical modeling of the propagation of vortex beams 
with a spiral phase through a randomly inhomogeneous medium being presented by a phase screen 
placed in the beginning of the propagation path. Such beams, if propagated under conditions of weak 
turbulence, also experience distortions, like Gaussian beams. However, the statistically averaged 
vortex beams conserve the central intensity dip with a nonzero intensity on the beam axis. The 
greater the beam vortex charge, the longer the beam propagation distance, at which the central dip is 
not smeared. The vortex beams being the Laguerre–Gaussian modes are found to have the same 
broadening properties while propagated through a randomly inhomogeneous medium as the Gaussian 
beams. The broadening of averaged vortex beams does not depend on the vortex charge and coincides 
with the broadening of a Gaussian beam.  

 

Introduction 

In recent years, interest has increased in the 
studies of non-Gaussian laser beam propagation 
through turbulent atmosphere. In particular, it is 
caused by the search for new types of laser beams for 
use in optical communication. The studies in Refs. 1 
to 3 are analytical investigations into the properties 
of the higher order annular Gaussian beams (HOAG 
beams according to terminology in these papers) 
propagated through the turbulent atmosphere. It was 
noted that at their propagation through the turbulent 
atmosphere, the time-averaged intensity of such 
beams undergoes some stages of evolution. The 
averaged beam energy tends to concentrate near the 
axis at intermediate distances of propagation. Thus, 
the main averaged beam is formed. Finally, when 
propagated at a significant distance, the initially 
HOAG becomes purely Gaussian averaged beam.3–5 
 In Ref. 4, the propagation properties of tubular 
light beams of round, elliptical, and square-shaped 
cross sections were investigated analytically.  

Recently, the light beams transferring the 
optical vortexes6–8 have attracted a great interest. 
The lowest order Laguerre–Gaussian modes LG0,l of 
a laser resonator can serve as an example for such 
beams. Their intensity distribution forms a ring and 
their phase covers a spiral surface because of the 
optical vortex on the beam axis. The effect of a 
central dip and vortex on the Gaussian beam 
properties was investigated in Ref. 9 and it was 
shown that the vortex worsens the beam quality as 
compared with the quality of an ordinary Gaussian 
beam. Nevertheless, the unique capability of the 
beams that transfer the optical vortexes to transfer 
their orbital angular momentum had caused a large 
development in singular optics10–12 and its various 
practical applications, including the so-called optical 
forcepses.6–8 The beams can be obtained in several 

ways: by means of computer-synthesized holograms 
and diffraction optics,10 at conversion of Hermit-
Gaussian modes11 and so on. Various ways of their 
formation are being developed and improved.  

In recent years use of the orbital angular 
momentum (OAM)12 transferred by the light beam 
with optical vortex has been actively investigated. It 
appears essential for information coding in lines of 
optical communication. It was shown that even weak 
turbulence is a serious problem for operation of 
optical communication systems on the basis of OAM 
transfer. 

By means of numerical modeling, we have 
studied the propagation properties of vortex beams 
under conditions of slightly turbulent atmosphere by 
an example of a simple model with a single phase 
screen and the effect of optical vortex of the beam on 
these properties. 

1. Vortex beams and their properties 

Let us set the vortex beam with a topological 
charge l in the cylindrical coordinate system (r, θ,  z) 
by the formula for the complex function of scalar 
field: 
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where 

 2 ( !)A l= π  

is the normalization factor;  

 2 2
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is the beam half-width;  
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 R( ) arctan( )z z zϕ =  

is the Gouy phase; 2

R 0z w= π λ  is the diffraction 

beam distance (Rayleigh distance); R(z) is the radius 
of curvature of the beam wave front. 

Formula for the vortex beam intensity has the 
form  

 

2
2 2

2

2 2

2 2
( , ) ( , , ) exp .

( )( ) ( )

l

l l

A r r
I r z U r z

w zw z w z

⎛ ⎞ ⎡ ⎤−
= θ = ⎜ ⎟ ⎢ ⎥⎜ ⎟

⎣ ⎦⎝ ⎠
  (2) 

Vortex beams (1) are the Laguerre–Gaussian 
modes 

,p lLG  with p = 0. If l = 0, we shall obtain the 

Gaussian beam 0,0LG  as the lowest mode: 
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The effective radius reff of the vortex beam (1) 

appears proportional to ( 1),l +  whereas the 

maximum radius of the intensity ring rd is 

proportional to :l  
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As known from the laser theory, all Laguerre–
Gaussian modes under conditions of free propagation 
conserve its shape accurate within scaling.13  Using 
formula (2), one can easily see that the diffraction 
distance for the vortex beams does not depend on l 
and coincides with the diffraction distance for the 

Gaussian beam vortex gauss
.R Rz z=  

Let us consider a collimated vortex beam (1) in 
the source plane taken in the following form 
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The intensity distribution for this beam has the 
shape of a ring: 
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Since formula (5) for the vortex beam with zero 
charge l = 0 agrees with the Gaussian beam formula:  
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we shall consider the Gaussian beam as the vortex 
one with zero vortex charge l = 0, for a convenience. 
 The vortex beam (5) 
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contains the point of zero intensity on the beam axis 
coinciding with the point of the phase singularity. 

The vortex beam wave front has the form of 
helicoidal (spiral) surface.  

Note that the difference between the vortex 
beam (5) and the Gaussian beam (7) is in the vortex 

cofactor e ( ) .l il lr x iyθ
= +  Such a cofactor in 

formula (5) denotes the optical vortex with the 
charge l > 0 on the beam axis. The Poynting vector 
characterizing the motion of light energy in the beam 
is directed along a spiral path around some line of 
zero field intensity. Trajectory of this vortex center 
coincides, in the 3-D space, with the beam axis. The 
optical vortex prevents the diffraction washout of a 
central dip of the vortex beam as compared with 
annular beams, without such a vortex cofactor.9  

In Ref. 9 one can find an analytical description 
of the beam properties with and without a vortex at 
free propagation. Both types have identical amplitude 

factor and only differ by the phase factor e .
ilθ  At 

free propagation, the vortex beams conserve their 
shape in contrast to the annular beams without a 
vortex.  

2. Description of the computer 
experiment  

In the numerical experiment, we have 
investigated the effect of phase fluctuations on the 
vortex beam propagation. One phase screen is located 
at the beginning of the path. The calculations were 
made using known numerical model.14,15 Within the 
limits of paraxial approximation, we have solved the 
parabolic equation in the dimensionless form  
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where W(x, y; z) is the complex wave amplitude, T is 
the temperature field with the spectral density ] 
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where L0 and l0 are the outer and inner scales of 
turbulence normalized to the initial beam radius r0, 
equal to 100 and 0.1 cm, respectively. The wave 

parameter 2

0 0/(2 )Z L r= λ π  was equal to 0.1 for 

λ = 0.63 μm. The values of the parameters correspond 
to the ground layer of the turbulent atmosphere for a 
horizontal path of 1 km long and the beam with 
r0 = 10 cm.  

The order of the grid matrix was equal to 512. 
We used the method of statistical tests, mean, over 
200 realizations, were taken as estimates. The effect 
of turbulence on the beam was characterized by the 

scintillation index 2,Iσ  being the normalized variance 

of fluctuations of the Gaussian beam intensity I(z)  
calculated on the beam axis. Figure 1 presents the 

dependence of 2

Iσ  on the structure characteristics of 

temperature fluctuations 2
.TC  

(4)

 (9)
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Fig. 1. Dependence of the scintillation index 2

Iσ  on the 

dimensionless turbulence parameter 2
,TC  obtained in the 

experiment. The root-mean-square deviations shown by 
vertical bars are taken as the confidence intervals. 
 

Obviously, the vortex beams as well as the 
Gaussian ones, propagated through a randomly 
inhomogeneous medium undergo the effect of this 
medium. The random inhomogeneities of the medium 
refractive index along the propagation path cause 
beam fluctuations. These result in both random 
displacements of its axis and structure deformations. 
The point of zero intensity for the vortex beam 
initially being in the beam center is moved from the 
axis of the beam propagation but it does not 
disappear absolutely. The deformations of the 
initially symmetric intensity ring and distortions of 
the beam phase take place even under conditions of 
weak turbulence. For the beams with l > 1, the 
vortex core appears splitted into l elementary 
vortexes with l = 1, displaced from the axis of the 
beam propagation. 

However, in practice the averaged parameters of 
beam realizations often are of higher interest instead 
of individual realizations. The averaged beam is the 
result of addition of all instantaneous realizations 
within a finite time interval. Single points with zero 
intensity in such a beam are absent, but there is a dip 
in its center. The type of beam intensity statistically 
averaged over a large number of realizations was 
assumed as radially symmetric (in the form of a ring 
with a nonzero dip in its center). It is convenient to 
describe this dip as follows 

 h = (Imax – I0)/Imax,  

where I0 is the intensity on the beam axis, Imax is the 
maximum intensity in the ring-maximum. The beam 
divergence is characterized by the normalized 
effective beam radius  

 eff eff eff( ) ( ) ( 0).R z r z r z= =

�  

Figure 2 presents the intensity and phase of the 
initial collimated vortex beam with l = 1 and the 
intensity profiles. One can see the decrease of the dip 
depth in the center of the averaged beam due to the 
increasing distance from the phase screen.  

We have also calculated the propagation of the 
collimated vortex beams with l = 2 and 3. Besides, 
we have found that at propagation of vortex beams 
passed through one phase screen at the beginning of 
the path that simulates the turbulence effect the 
gradual smearing of the central dip of the averaged 
beam takes place, and, the higher is the vortex beam 
charge, the longer is the propagation distance at 
which this dip disappears. 

At  higher  values  of 2
,TC   the  gap  smears faster.

 

  
 

    
 zk/zR = 0.0   zk/zR = 0.2 zk/zR = 0.4   zk/zR = 0.6 

Fig. 2. Intensity (à) and the phase (b) of the initial collimated vortex beam with l = 1; profiles of the beam intensity 

calculated for some propagation distances zk/zR 

= 0.0; 0.2; 0.4; 0.6 (c–f) using the values of the dimensionless parameter 2

TC = 0.1. 
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Figure 3 shows the dependence of squared 
normalized effective beam radius 2 2

eff ( ),TR C�  that 
coincides for all considered vortex and Gaussian 
beams and is presented by a straight line. That is 
why the dependences of 2 2

eff ( )Tr C  on 2

TC  for the 
vortex beams with l = 1, 2, and 3 and the Gaussian 
beam are parallel straight lines with the identical 
slope angle. This means that the vortex beams 
considered as well as the Gaussian beams undergo 
identical broadening while propagated through the 
medium behind the phase screen.  
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Fig. 3. Dependences of 2 2

eff ( )TR C�

 for vortex beams at 

zk/zR = 0.2. 

 

At propagation of these vortex beams along the 
path, there occurs smearing of the central dip and the 
greater the vortex beam charge (and, therefore, the 
wider the vortex funnel), the longer the dip 
conserves. 

Besides, we have revealed that the vortex 
beams, being the lowest Laguerre–Gaussian modes, 
have the same broadening properties as the Gaussian 
beam. The broadening of the averaged vortex beams 
does not depend on the vortex charge l and coincides 
with the Gaussian beam broadening. 
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