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We present preliminary results of a numerical solution (by the Monte Carlo method) of the 
nonstationary radiation transfer equation for the case of an optically dense disperse medium. As a 
model medium, we took a homogeneous water droplet cloud. It is expected that an ultra short (about 
50-fs duration) intense laser pulse stimulates nonstationary transient process inside the volume of a 
scattering particle. The result can be transformation in time of its optical characteristics and, 
primarily, of its scattering phase function. To calculate the dynamics of the scattering phase function 
of a transparent spherical particle, the nonstationary Mie theory was used, based on the Fourier 
transform of the initial light pulse and the linear theory of radiation diffraction on a sphere. The 
field scattered by a particle and the internal field inside the particle are written in the form of the 
integral of convolution of the pulse spectrum with the spectral response of the particle. Based on 
spatiotemporal diagrams of light intensity, we have isolated four stages in the nonstationary light 
scattering by a particle. Then the calculated optical characteristics of a particle have been used as 
input parameters in solving the problem on multiple scattering of the light pulse by a water aerosol. 
 

Introduction 
 

One of the specific features of a pulsed radiation 
of ultra-short duration is its broadbandness. The 
spectral width Δω of a pulse is inversely proportional 
to the pulse duration tp and can make the values 
Δωp ∼ 1015–1016 Hz at tp ≈ 10–14–10–15 s. Such a wide 
frequency range enables simultaneous excitation in a 
particle of a large number of high-Q electromagnetic 
vibrational eigenmodes, the whispering gallery modes 
(WG), the existence of which was recorded 

experimentally and then proved theoretically.1,2 When 
the frequency of the optical wave incident on a 
particle coincides with the frequency of one of the 
particle’s eigenmodes, there occurs resonance excitation 

of the internal optical field. The spatiotemporal 
distribution of this field is entirely determined by the 
morphology of the excited mode. Typical lifetimes τR 
of the highest quality WG modes in micron-sized 
particles are, as a rule, about nanoseconds. Thus, if 
the duration of the original pulse is comparable with 
or less than τR, then its scattering by a particle can 
become non-stationary. 

 

 1. Single scattering of a femtosecond-
duration radiation by a microparticle 

 

The problem of femtosecond pulse scattering by 
a microparticle belongs to the problems of diffraction 
of non-stationary and, generally, inhomogeneous 

optical field on a dielectric sphere. Traditionally it is 
solved using the approach that combines the spectral 

Fourier method with the linear Mie theory. The 
initial non-stationary problem of diffraction is in this 
case reduced to the stationary problem of scattering 
of a set of monochromatic Fourier harmonics by a 
spherical particle. Here, the scattering properties of a 
particle are characterized by the so-called spectral 
response function Åδ(r; ω), which is a traditional Mie 
series written for all the frequencies of the initial 
pulse spectrum.3 A detailed description of this 

technique with details of its numerical realization can 
be found in Refs. 4 and 5. Here we restrict ourselves 
to summary of the main expressions. 

In the numerical calculations, we used the 

following representation of the electric field strength 
of the incident linearly polarized radiation: 
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where g(t) and S(r⊥) are the temporal and spatial 
profiles of the pulse, respectively; ω0 is the carrier 
frequency of the pulse; E0 is the real field amplitude; 
r = r⊥ + ezz; r⊥ = exx + eyy; ex, ey, ez are the unit 
vectors along the x, y, and z axes, respectively; t is 
the time; c is the speed of light in vacuum. We 
assumed that a dielectric spherical particle with the 
radius à0 was placed at the origin of coordinates, and 
the laser pulse diffracting on it propagated along the 
positive direction of the z axis. The temporal and 
spatial profiles of the optical signal were specified by 
the Gaussian functions 
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with the following parameters: tp and t0 are the pulse 
duration and time delay; w0 is the spatial half-width 
of the beam. 

The first step in solving this problem is transition 
from time coordinates to the spectral frequencies using 

the Fourier representation of the original optical pulse 
G(ω): 

 

 i i( , ) [ ( , )]t
ω

ω = ℑ =E r E r  

 0 0– ( )
0 0

1
( ) ( – )e ,

2
ik z a

yE S G
+

⊥= ω ωe r  (3) 

where ℑ is the Fourier transform operator; k0 = ω0/c. 
 Equation (3) multiplied by the exponent eiωt 
determines the spectral component of the initial pulse 
as a monochromatic wave with the partial amplitude 
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Diffraction of this wave on a spherical particle is 
described within the stationary approximation of the 
Maxwell equations: 
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where H
ω
(r; ω) is the vector of magnetic field 

strength; εa is the complex dielectric constant of the 
particulate matter; k = ω/c. The boundary conditions 
on the spherical particle surface (r = | r | = a0) are set 
based on the requirement that tangential components 
E

ω
 and H

ω
 of the internal field keep continuity in 

crossing the particle surface: 
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where nr is the vector of the external normal with 
respect to the particle surface; the superscript s refers 
to the field of a scattered wave. 

Solution of Eq. (5) taking into account Eqs. (4) 
and (6), with the spatial beam profile set as the 
Gaussian function (2), gives the following spectral 
representation of the electric field of an optical wave 
scattered by a particle: 
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ma is the index of complex refraction of particle 
substance. The generalized coefficients anm and bnm 
are connected with the Mie coefficients for a plane 
wave an and bn (these notations were introduced in 
Ref. 6) by the following expressions: 
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where (gnm)TH and (gnm)TE are the beam shape 
coefficients (BSC) being double integrals of the 
original beam’s radial field components.7–10 For a 
weakly focused Gaussian beam (2) centered at the z 
axis they have the form: 
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where ξ0 = x0/w0 and η0 = y0/w0 are the dimensionless 
coordinates of beam’s focal waste center (x0, y0); 
s = 1/(k0w0 

) is a dimensionless parameter. For a 
plane wave linearly polarized along the y axis,  
all the BSC equal zero, except (gn(±1))TE = 1/2 and 
(gn(±1))TH = °(i/2). Within the considered approach, 
the electric field of the optical wave scattered by a 
particle is presented as an integral of convolution of 
the initial pulse spectrum with the function of 
spectral response of the particle: 
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Here, Åδ(r; ω) stands for the series in the right-hand 
part of Eq. (7). From Eq. (8) the expression follows 
for the scattering intensity of a short optical pulse by 
a spherical particle: 
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where (3)
nm

M�  and (3)
nm

N�  are referred to as the angular 
part of the spherical harmonics. The time-dependent 
expansion coefficients anm(maa0; t) and bnm(maa0; t) 
are determined by the following expressions: 
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 2. Characteristics  
of nonstationary elastic scattering 

 

In our numerical modeling, the complex particle 
refraction index ma and the laser radiation wavelength 
λ0 are assumed to be ma = 1.33 – i ⋅ 10–8; λ0 = 0.8 μm, 
which corresponds, for example, to water molecules 
exposed to Ti:Sapphire laser pulses. The frequency 
dispersion of the particle refractive index in the chosen 
wavelength range is neglected, also neglected are the 
nonlinear optical effects of multiphoton ionization 
and multiphoton absorption. 

Time behavior of the optical field scattered by 
a water droplet exposed to a laser pulse with the plane 
wave front is illustrated in Fig. 1. For clarity, all the 
intensity values in Fig. 1 are normalized to their 

maximum values in the considered spatial region 
(r = 100a0). The origin of the time axis is the moment 
when the leading edge of the pulse front (at the level 
of å–2 of the intensity maximum) penetrates into the 
particle. 
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Fig. 1. Time behavior of the relative intensity of radiation 
scattered forward (θ = 0°) (à) and backward (θ = 180°) (b) 
from a water droplet with a0 = 5 µm for the case of laser 
pulse with tp = 50 fs and t0 = 2tp. 

 

Maximal volume values of the spectral response 

function of a water droplet Å
max

δ (ω) depending on the 
relative frequency shift from the central radiation 
frequency 

0 0( )/Δω = ω − ω ω  are shown in Fig. 2. 
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Fig. 2. Spectral behavior of the maximal volume values of 
the water droplet response function with à0 = 5 µm for 
radiation with λ0 = 0.8 µm. 

 
From these figures we can see that the time 

dependence of the optical field intensity is generally 
characterized by two patterns: the pattern that 

practically reproduces the time profile of incident 
radiation and a tail that exponentially falls off with 
time. This “afterglow” results from the delay of the 
incident wave field by high-Q WG modes in the 

particle. Their effective simultaneous excitation occurs 
owing to a broad frequency spectrum of the laser 
pulse (see Fig. 2). Time duration of the “afterglow” 
phase can be large and can make, depending on time 
parameters, tens and hundreds of lengths of the 
original pulse. Besides, at this stage one can observe 
large-scale periodic intensity pulsations, having the 
features of the frequency beatings among several most 
high-Q resonance modes stuffed with the high-
frequency background. 

The normalized scattering phase function of a 

water droplet 
s
( )I θ  in the femtosecond pulse field is 

depicted in Fig. 3. 
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Fig. 3. The scattering phase function of a water droplet 
with a0 = 5 µm exposed to a laser pulse with tp = 50 fs, 

t0 = 2tp at different time moments t = t/tp = 1 (1), 2 (2), 
10 (3), and 20 (4). 
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In this figure, one can see four time stages in  
the formation the scattering phase function that 

correspond to three conditional phases of the scattering 
process, namely, 1) the moment of in-particle 

penetration of ∼10% of the initial pulse energy 
(curve 1), 2) scattering of a half of the pulse energy 
(curve 2), and 3) the moment at which the pulse 
completely leaves the particle (curves 3 and 4). One 
can see that the shape of the scattering phase 
function is different in each of the three phases. The 
first two phases give the most of the forward scattering, 
which is typical of the usual stationary light scattering 
by an optically large particle (the diffraction parameter 
of a five-micron droplet for a 0.8 µm wavelength is 
∼39). Note that the entire first phase (curve 1) features 

almost no visible backscattering. It appears only in the 
end of the second phase (curve 2). The third phase has 
alternating forward and backward scattering peaks 
with gradual reduction of their amplitude, which 
corresponds to pulsations in emission at the resonance 
modes of the particle, which have accumulated a part 
of the pulse energy. 

 

3. Multiple scattering of femtosecond 
radiation in a liquid-droplet cloud 
 

Calculated characteristics of nonstationary elastic 
scattering at a single droplet make the basis for 
formulation and solution of the problem of 
femtosecond radiation transfer in a finite volume of a 
liquid-droplet cloud medium. Formally, this implies 
solution of the nonstationary transfer equation with a 
time-dependent kernel. This is not a trivial problem. 
Our first numerical estimates can be found in Ref. 11, 
where we have numerically studied spatiotemporal 
development of the optical field around the channel 
of high-power laser radiation that vaporizes the liquid-
droplet aerosol along the propagation path. The 
calculations were based on the algorithm, where we 

combined the Monte Carlo method with the discrete 
ordinates method. In the current calculations, we 
follow the technique used in Ref. 11. The natural 
basis for discretization of nonstationary transformation 
of the scattering phase function is the above phases 
of the optical field evolution inside a particle. Thus, 
we consider the nonstationary integro-differential 
Boltzmann equation in a 3D space r = r(x, y, z): 
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where ( , , , )I t λr ω  stands for the intensity of radiation 

with the wavelength λ at the point r propagating 
along the ( , , )a b cω  direction at the time moment t; 

0( , , , )I t λr ω  is the source function (see, for example, 
Ref. 12); v is the absolute value of the speed of 
particle motion in the medium, 

 v= ,v ω  ( , , ),a b c=ω ω  a2 + b2 + c2 = 1; 

M( , , , , )G t′ ′λ = λr ω ω  is the volume coefficient of 
directional monochromatic elastic scattering (Mie 

scattering) along the direction ;′ϑ = ω ω  R( , , , , ),G t′ ′λr ω ω  
is the same for broadband elastic and inelastic (in 
particular, Raman) scattering; σ(r, t, λ) = σa(r, t, λ) + 
+ σs(r, t, λ) is the extinction coefficient; σa, σs are the 
coefficients of absorption and scattering, respectively. 
  At this stage we use a series of simplifying 
assumptions. First, we neglect the effects of frequency 
redistribution of radiation, i.e., we assume GR = 0; 
second, we believe that the process of interaction of 
the femtosecond pulse with the droplet is characterized 
by changes only in the scattering phase function. 
Therefore, 
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where g(μ, t) is the normalized scattering phase 
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For semi-infinite scattering media (Ref. 12), the 
Monte Carlo method is ineffective. Usually (see, e.g., 
Ref. 13), it is assumed that the space Q, where the 

radiation is transferred, is confined by some convex 
surface Γ and σ(r, t, λ) ≥ σm > 0 at r ∈ Q. 

Then, the natural boundary conditions for 

Eq. (12) have the form 

 ( , , , ) 0,I t λ =r ω  if ∈ Γr  and ( , ) 0,
r

>nω  

where nr is the inner normal to the surface Γ at the 
point r. 

For us, it is of interest to consider the linear 
functionals found from solution of the transfer 

equation 
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Here R, Ω, and T refer to the subspace of eight-
dimensional phase space X = R × Ω × T × Λ. Thus, r ∈ R, 

,∈ Ωω  t ∈ T; ϕD is the weighting function, which in 
the simplest case has the following form (see Ref. 14) 
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where t*
 is the time of photon’s entering some specified 

area of the phase space r* ∈ D ⊂ R, for example, the 
area of physical detector; ΔΩ is the indicator function 
of the area .D∈ ⊂ Ωω  

When the area D is small (what is typical of the 
situations in remote sensing), the sought functionals 
(14) are calculated with the help of the weighting 
modifications of the Monte Carlo method, most 
preferable among which are such approaches as the 
differential (local) flux estimate.14,15 Formally, the 
first order local estimate is determined as an 
analytical expression for the probability density of 
stochastic event, the latter implying that a photon 
after the nth (n = 0, 1, 2, …) state of the Markovian 
random walk chain enters the given area of the 
detector D ⊂ X: 
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where E is the symbol of mathematical expectation, 
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ω  and t

n
 are the phase 

coordinates of the photon in the nth state of the 
Markovian chain, x*

 ∈ D; qn are the photon statistical 
weights (Ref. 14); h1(xn → x*) is the transition 
probability of the Markovian chain. 

The form h1(xn → x
*) almost coincides (see Ref. 14) 

with the kernel of the original transfer equation 

rearranged to the integral form. 
Thus, though the Monte Carlo method is not 

directly connected with the solution of integro-
differential equation (12), however, constructing the 
effective weighting estimates, such as in Eq. (16), 
requires formal grounding. 

The most general formalism of the transformation 
of a single-speed transfer equation to the integral 
Fredholm equation of the second kind are considered 
in Ref. 16 and generalized, for the case of multigroup 
theory, in Ref. 12. The integral transfer equation 
involving time dependence of the estimated functionals 
have been first formulated in Refs. 15 and 17 and 
later in Ref. 18. 

Indeed, Eq. (12) can be presented in the operator 
form: 
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where L is the generalized operator of the differential 
transfer and K is the integral operator of scattering. 
  Therefore, 
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The technique of building up the complex operator 
(L–1

 ⋅ K) has been discussed in Ref. 16. Using this 
technique and omitting cumbersome computations we 
obtain the expression 
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where ,l′ = −r r ω  0 ≤ l ≤ ξ*, ξ* is the distance from the 

point r = (x, y, z) to the surface Γ along the direction 
;ω  ( , , )tΨ r ω  is the modified source function. 

It is evident that in the generalized form 
Eq. (19) does not differ from its canonical variant 
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where ( ) ( ) ( )f I= σx r x  is the photon collision density, 
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Convergence of the Eq. (20) in the form of the 

Neumann series over collisions, under condition that 
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has been proved many times (see, e.g., Refs. 13 and 14). 
  It now follows from Eq. (19) that 

 *

1( )
n

h → =x x  

 
* *

* *s

2
* *

( , )exp ( , )( )
( ) ( ),

( ) 2 ( )

j

i

g t
l t

p
Ω

⎡ ⎤μ −τ′σ ⎣ ⎦= Δ Δ
′σ π −

r r
r

r
r r r

 (22) 

where ΔΩ(l
*) is the indicator of the detector area, 
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 Δi(t
*) is the characteristic function of the 

ith time interval of photon’s occurrence in the 

detector area; 

*

*

0

( , ) ( ( ))d

l

l lτ = σ∫r r r  is the optical 

length of the segment [r, r*]; tj stands for the time 
stages of the shape transformations of the scattering 
phase function, in this case j = 1, 2, 3, 4; p(r*) is the 
distribution density of the random point r* ∈ D ⊂ R 
over the detector volume. In this example, the selection 
of p(r*) is not realized since the detector is positioned 

beyond the scattering volume. Thus, finiteness of the 
variance estimate by Eq. (16) is guaranteed. 

Therefore, the local estimate by Eq. (22) also 
keeps canonical13–15 with the only exception that the 
scattering phase function assumes a discrete set of 
realizations conditioned by the physics of the process 
(see Fig. 3). The probability of choosing this or that 
form of g(μ) is governed by an a priori estimate of 
the portion of light energy scattered at each stage of 
g(μ) transformation. 
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We shall not consider particular algorithms of 
random selection determining photon trajectory, 
because these are well known (see, for example, 
Refs. 13–15, 17). 

 

 4. Numerical example 
 
Below, we estimate the possible effect of the 

non-stationary kernel of the integral transfer equation 
onto the characteristics of multiply scattered pulsed 
radiation field. The calculations are done by the 
Monte Carlo method. These results are regarded as 
preliminary, because they are obtained for a particular 
case of a homogeneous monodisperse liquid-droplet 
medium with the particles of 5 µm radius. The 
boundary conditions reflect the possible scheme of 
lidar sensing of clouds. 

A monochromatic light beam with the wavelength 
λ = 0.8 µm and the divergence angle ϕi = 0.5 mrad is 
incident on the scattering layer of a certain specified 
optical thickness. The temporal and spatial profiles of 
the optical signal are set by the Gaussian functions 
according to Eq. (2) with tp = 50 fs and w0 = 0.005 m. 
The functionals of interest (14) are the spatiotemporal 
intensity distributions of diffusely reflected and 
transmitted radiation in the neighborhood of the 
light beam. 

The leading specialists in femtosecond atmospheric 
optics have expressed, in one of their recent paper,19 

the idea of using spatioangular configuration of the 
field of multiply scattered radiation in the receiving 
plane of a monostatic sounding scheme for quality 
estimates of the cloud droplet spectrum. In this  
 

connection, in Fig. 4 we present examples of angular 
distribution of diffusely backscattered and diffusely 
transmitted fluxes for point detector and flat one of  
5-m radius. The estimates are given for integral over time 

fluxes. The results are compared to the standard 
stationary scattering phase function (classical Mie 
scattering6). It is characteristic that taking into 
account the non-stationary dependence g(μ, t), the 
geometric configuration of the angular distribution 
I(ϕd) does not change too much, and in the case of a 

wide-angle receiption, ϕd ≥ 0.04 rad, the dependence 
g(t) does not manifest itself. At the same time, the 

integral values of backscattered and transmitted fluxes 

differ considerably: the portion of diffusely 
backscattered radiation grows and that of transmitted 
radiation drops. 

Figure 5 illustrates the calculated time 

characteristic of the intensities of backscattered (a) 
and transmitted (b) signals. 

Fourier method combined with the linear Mie 
theory. 

The time behavior is expressed in the units of free 
photon path for different angular apertures of the 

point detector, 1/2ϕd = 0.5–175 mrad. The control 
results shown by curves 1–4 have been calculated using 

the classical stationary Mie scattering. Comparison of 
the results makes it possible to estimate the influence 
of shape transformation of the scattering phase 
function (great anisotropy decrease) onto the behavior 

and strength of backscattered and transmitted 
signals. The calculations have a local character, since 
they have been done for a monodisperse medium and 
for some values of pulse duration and droplet size. 
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Fig. 4. Angular distribution of the integral flux of diffusely backscattered (a) and transmitted (b) radiation neglecting 
(curves 1, 2) and with the account of (curves 1′, 2′) the resonance interaction between femtosecond pulse and water droplets; 
1, 1′ refer to the point detector; 2, 2′ refer to the flat detector (with a 5-m radius); optical depth of the layer is τ = 1.0. 
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Fig. 5. Time distribution of the intensity of backscattered (a) and transmitted (b) signals depending on the angular receiving 
aperture with the account of (curves 1′–4′) and neglecting (curves 1–4) the resonance pulse–droplet interaction; τ = 1.0. 

 

This circumstance does not enable making quantitative 
forecasts. However, the presence of noticeable growth 
of scattered radiation about the location angles, when 
the pulse duration is comparable to droplet sizes, is 
undoubtedly evident. 

 

Conclusion 

 

In this paper, we have proposed an analytical 
model of the nonstationary and inhomogeneous 
optical diffraction on a dielectric sphere. The model 
is based on the Fourier method combined with the 
linear Mie theory. 

The obtained compact mathematical expressions 
allow a quantitative estimate of the characteristics of 
the nonstationary elastic scattering of ultra-short 
laser pulses by a water droplet, with its size being 
comparable to pulse length. Discovered is a notable 
transformation of the angular scattering function 
when the pulse goes through the droplet volume. 
These estimates were used as the input parameters for 
numerical solution of the integral transfer equation 
with a nonstationary kernel. The boundary conditions 
correspond to a typical scheme of laser sensing of clouds. 
  Preliminary results demonstrate the possibility 
of a considerable enhancement of the backscattering 
signal due to the reduction of anisotropy of the 
scattering phase function of a cloud droplet. 

In the future, we are planning to estimate the 
effect of medium polydispersity and absorption by 
dielectric particles. 

The results of this work were discussed at the 
12th International Symposium on Atmospheric and 
Ocean Optics. Atmospheric Physics held in Tomsk 
in 2005 (Ref. 20). 
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