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Different methods to control the filamentation zone location of high-power femtosecond laser 

radiation at its self-focusing in the atmosphere are considered. These are spatial beam focusing, 
frequency beam modulation, and beam profiling. Solving the nonlinear Schrödinger equation, the range, 
within which the radiation parameters are to be modified to enable the control of nonlinear beam focus, 
is determined from the standpoint of the most effective transport of light energy to the receiver. 

 
 

Introduction 
 

In a wide range of atmospheric optics problems, 
the problems of laser energy transportation through the 
atmosphere to a receiver with minimum losses are now 
highly important. First of all, this implies optimization 
of the geometric size of a light beam at the receiving 
equipment while the conserving, if possible, the time 
and spectral properties of the radiation. In contrast 
to conventional linear regime of laser pulse propagation 
through the air, when one only needs to compensate  
for the beam diffraction and its spreading due to 

atmospheric turbulence along the source–receiver path, 
what is performed by a proper selection of the focal 
length of the transmitting optical system, the high-
power laser radiation passes through the atmosphere 
in the self-action mode, i.e., it undergoes the amplitude 
and phase distortions due to nonlinear variation of 
optical characteristics of the medium itself.1 In that 

case the effects of thermal defocusing, stimulated Raman 

scattering due to vibrational-rotational transitions of 
nitrogen and oxygen molecules, as well as the wind 
beam refraction essentially hamper conservation of the 
laser beam energy and size along the propagation path. 
  One of the solutions to this problem could be 
reduction of the laser radiation duration emitted while 
keeping the same energy. The sources of femtosecond-
duration laser radiation, created over the past several 
years, can generate light pulses of several tens and 
hundreds of femtosecond duration with the peak power 
up to several petawatt. That high-power radiation 
propagates through the atmosphere in the filamentation 
regime along the optical path under conditions of  
a “frozen” medium, because the effects of thermal 
blooming and wind refraction cannot affect the 

radiation parameters.2 
However, other factors appear in this situation, 

which adversely affect the characteristics of the laser 
pulses propagated. The filamentation of high-power 

radiation is accompanied by the formation, along the 
propagation path, of a plasma channel generated due 
to multiphoton gas ionization that can, first, 
significantly decrease the efficiency of the radiation 
energy transfer along the path and, secondly, 
essentially transform its time and spectral properties.3 
Besides, after being nonlinearly focused at the output 
from the filamentation zone a light beam acquires 
high divergence, which far exceeds the initial 
diffraction one, and sharply increases the beam size 
with the distance.4 

Thus in order to optimize the energy transfer  
of high-power femtosecond radiation through the 

atmospheric path, it is necessary, first of all, to place 
a receiver close to a nonlinear beam focus, i.e., in the 
beginning of the filament. And vice versa, at a 
specified geometry of the path it is essential that a 
nonlinear focus be at the receiver’s zone, and to 
achieve this goal one should be capable of controlling 
the spatial position of the beam filamentation zone. 
  Below we consider three methods of achieving 
this task: control of the beam focusing along the path, 
the frequency modulation of the radiation, and 

formation of the intensity profile across the beam. 
 

1. Beam focusing 
 

One of the most traditional methods, which 
allows one to achieve concentrating the light energy 
somewhere in space, is to modify the curvature of the 
radiation phase front at the exit from the light source, 
or, in other words, the laser beam focusing. For a 
beam with the Gaussian spatial profile of the light 
field amplitude, characterized by the beam radius R0, 
at the e–1

 level of the intensity distribution maximum, 
and by the radius of the phase front curvature F′ 
(focal length of the optical system), the square of the 
beam radius as a function of the distance z of the 
beam propagation in vacuum is described by the 
known expression: 
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and its intensity is maximum at the point of a 

diffraction focus 
2

F F R/ /(1 /4).z z L F F′= = +  Here 

the following normalization of the values is used: 

 R ,z z L′=  R ,F F L′=  

where 
2

R 0 /2L kR=  is the Rayleigh beam length, 

k =2π/λ. 
The Kerr effect favors the change of the medium 

refractive index n under the action of the light wave 
electric field. As a result the wave phase ϕ at the point 
(r⊥, z) takes a shift δϕK proportional to the local field 
intensity I(r⊥, z): δϕK(r⊥, z) = kzn2I(r⊥, z), where n2 is 
the coefficient characterizing the nonlinear response 
of the medium. It is evident that for a Gaussian beam 
the action of the Kerr effect is equivalent to its 
focusing by a nonaberrational spherical lens with the 
variable focal length. In this case within the framework 
of the theory of standard self-focusing,5 Eq. (1) is 
transformed to the following form: 
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where η = P0/Pc, P0 is the initial radiation power, 
Pc = 2π/(k2n0n2) is the critical power of self-focusing. 
Thus at η = 1 the nonlinear Kerr lens compensates for 
the beam diffraction spreading, and at η > 1 results in 
its collapse (R → 0) at the point of nonlinear focus: 
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where K 2/ 1.z = η −  

It should be noted that if the theory accounts 
the self-focusing of nonlinear (multiphoton) absorption 
of the atmosphere as well as of the plasma 
nonlinearity, then no beam collapse happens and, as 
a result, instead of the collapse the beam forms a 
waveguide propagation channel near the optical axis 
– the filament, in other words. 

One can see from Eq. (3) that the nonlinear 
beam focus is always located before its diffraction 

focus, and, hence, at a fixed radiation power it is 
possible, by varying the parameter F, to move, within 
certain limits, the position of the light filament along 
the path. 

Figure 1 shows for different values of the focal 
length F the calculated dependences on the propagation 
distance of the geometric (determined by the level e–1

 

from the maximum of transverse distribution of beam 

energy density) R(z) and effective (power) radii Reff(z) 
of a femtosecond pulse with a Gaussian spatial-
temporal intensity profile and the following 

parameters: the wavelength λ0 = 810 nm, the duration 
tp = 80 fs, the initial radius R0 = 1 mm. The basis for 
numerical calculations was the nonlinear Schrödinger 

equation (NSE) describing the electromagnetic wave 
propagation in a medium in the approximation of 
slowly varying field amplitude supplemented by the 

rate equation for the concentration of free electrons  
of the plasma (see, for example, Refs. 4 and 6). The 
nonlinear Schrödinger equation allows for the light 
wave diffraction in the presence of the air dispersion 
as well as the basic physical mechanisms of medium 
nonlinearity for the ultra-short radiation pulses: 
instantaneous and inertial Kerr effect, radiation 

absorption and refraction by plasma, formed as a 
result of the multiphoton gas ionization. 
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Fig. 1. The dependence of normalized values of geometrical 

R= R(z)/R0 (à) and the effective 
effR = Reff(z)/R0 (b) radii of 

a femtosecond pulse with η = 5 and F = 0.5 (1); 1 (2);  
2 (3), and –2 (4) on the distance along the propagation path. 

 

The effective beam radius Reff(z) was commonly 
determined as a functional of the optical field intensity 
at each point of space (r⊥, z) and time t1: 
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is the total energy of the light pulse; 
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is the radius-vector of the beam center of gravity. 
According to its definition, the effective radius 
determines the transverse size of the region where 
about 60% of the total beam energy is concentrated. 
  This figure shows that the decrease of the 
parameter F shifts the filament to the initial point of 
the path; in this case, in the region of nonlinear focus 
the degree of beam energy concentration increases (the 
effective radius decreases, Fig. 1b). 

From the practical point of view the most 

interesting is the situation when a beam has previously 
been defocused (F < 0) so that zF < 0 and zNF > zK, 
i.e., the onset of filamentation is shifted beyond the 
point of the collapse predicted by the theory of Kerr 
self-focusing for a collimated radiation at a given 
radiation power. It should be noted that the same effect 
can also be obtained by a specially selected small-scale 
modulation of the initial phase front of the beam.7 
  Theoretically the limiting value of the phase 
front radius of curvature, when the filament can yet 
be formed, is determined by the inequality: 

 c K2/ 1 .F F z≥ = η − ≡  (5) 

As the focal length approaches a given critical 
value, the distance zNF → ∞, and the effective beam 
radius grows infinitely. 

Hence, using the focusing/defocusing of a beam it 
is possible to control the position of the waist of a high-
power femtosecond radiation beam in the medium. 
 

2. Radiation frequency modulation 
 
The other method to control the femtosecond 

pulse filamentation is based on making use of the 
dispersion characteristics of the propagation medium 
itself. The idea consists in the use of originally long 
(subpicosecond) laser pulses with the initial peak 

power below the critical self-focusing power (P0 < Pc) 
with a linear frequency modulation (chirping). The 
frequency modulation of the radiation leads in the 
medium with the frequency dispersion to the time 
compression of such a pulse as it propagates through 
the medium.2 Thus the initially long pulse travels 
through the beginning of the path in the linear regime, 
without self-focusing, and then, being gradually 
compressed in time, passes into the regime of Kerr 
focusing accompanied by the formation of a filamentary 
structure. This technique has been already well 
approbated and has made it possible to obtain filaments 
at distances up to 200 m (Ref. 8) on horizontal paths 
in the atmosphere and at altitudes up to 20 km 
(Ref. 9) on the vertical paths. 

Consider a chirped pulse with the Gaussian time 
profile: 
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where ( ,0)U ⊥r
�  is the transverse profile of the beam 

electric field envelope, Gaussian over the spatial 
coordinate r⊥ with the initial curvature of the phase 
front F; b is the parameter of chirping (frequency 
variation within the pulse limits δω0 = 4b/tp); tp is 
the initial pulse duration. Now find the conditions 
imposed on the parameter value b, under which the 
initially “subcritical” pulse (η0 = P0/Pc(z = 0) ≤ 1) 
converts to the self-focusing regime (η(z) > 1) on a 
slant atmospheric path in the region of the beam 
focal waist z = 1 (F = 2). 

The solution of nonlinear Schrödinger equation 
for a beam with a temporal profile (6) for the path 
segment where the beam propagates linearly (P0 < Pc) 
after integration over the beam cross section ignoring 
the plasma generation and Kerr effect for the medium 
with normal dispersion yields the following inequality10: 
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is the dispersion of the pulse group velocity; G(z) is 

the altitude model of .k
ω
′′  In solving this inequality 

relative to the parameter b, we obtain the condition 
sufficient for “time self-focusing” along a slant path: 
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The possibility itself of passing to the regime of 
supercritical powers (η > 1) due to the temporal pulse 
compression in the zone z ≈ LR follows from non-
negativity of the square root in Eq. (8) and is determined 
by the condition necessary for “temporal self-focusing”: 
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Equation (9) relates the initial parameters of a laser 
pulse to the physical characteristics of the medium it 
propagates through. For example, a 800-fs pulse of Ti-
Sapphire laser with a beam of radius R0 = 4 cm (LR = 
= 6 km) and the subcritical initial power P0 = 0.94Pc 
will turn into the self-focusing regime on the vertical 
path close to a geometric focus z′ ≈ LR at the initial 
negative chirping ⏐b⏐ ≥ 3 (δω0 > 15 THz). In this case 
the altitude model of the behavior of the dispersion 

factor k
ω
′′  was chosen in the exponential form10: 

 *( ) (0) ( ) (0)exp( ),k h k G h k h h
ω ω ω
′′ ′′ ′′= = −  

where (0)k
ω
′′ = 0.21 fs2/cm, and h*

 = 6.8 km is the 

altitude of the inhomogeneous atmospheric layer. 
Figure 2 shows numerically calculated results on 

self-focusing process in the air for a chirped 

femtosecond pulse with the initial power, which is 
almost twice lower than the critical one (η0 = 0.6). 
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Figure 2 shows the variation along z of the geometric 
beam size and of the mean (effective) duration of the 
laser pulse Tl, which is determined in a way to similar 
to that used in the case of the effective radius (4): 
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is the position of the time gravity center of the pulse. 
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Fig. 2. The evolution along the horizontal path of 

normalized mean laser pulse duration 
effT = Teff(z)/tp (à) and 

the geometric radius 
0( )/R R z R=  (b) of a beam with 

“subcritical” initial power η0 = 0.6, the initial duration 

tp = 200 fs, and the radius R0 = 5 mm (F = 2) at different 
degree of linear frequency modulation b = 0 (1); –10 (2);  
–20 (3). 

 

It follows from Fig. 2 that because the initial 
power of a light pulse is lower than the critical one 
then in the absence of chirping the regime of its 
propagation is close to a linear one (curve 1). 
However, the power of a chirped pulse increases as it 
propagates along the path and the pulse can already 

undergo self-focusing (curves 2 and 3). In the case of 
the radiation parameters shown in Fig. 2 the 
threshold degree of the frequency modulation ⏐bc⏐ is 
about 8 according to Eq. (8). 

One can also consider the case when the initial 
power of the light pulse exceeds the critical value 
(η0 > 1) and it is required to shift the nonlinear 
beam focus to the right along the axis z. In this case, 
according to the condition of the problem the 
frequency dispersion of the medium must affect the 
modulated radiation pulse inversely: not decreasing 
its duration but increasing it instead, i.e., reducing 
the power as the radiation propagates along the path. 
This is achieved by changing the sign of chirping  
(the parameter b) from negative to positive. The 

numerically calculated evolution of the beam radius 
and the mean pulse duration in this case is presented 
in Fig. 3. 
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Fig. 3. The geometric beam radius R  (1, 2) and the mean 

pulse duration 
effT  (1′, 2′) with η0 = 10, the initial duration 

tp = 80 fs and R0 = 5 mm (F = ∞) at different degree of 
linear frequency modulation b = 0 (1); +17 (2). 

 

Hence similar to the beam focusing the pulse 
frequency modulation is capable of giving rise to its 
self-focusing and formation of filaments, whose 

position on the path can be controlled by changing 
the depth and sign of chirping. 

 

3. Self-focusing  
of profiled light beams 

 
A prerequisite for the control of nonlinear 

focusing of femtosecond radiation pulses using the 
variation of its spatial intensity profile is, first of all, 
the difference in the dynamics of linear diffraction of 
such beams. As known, free radiation diffraction is 
described by the following equation: 
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 is the slowly varying complex 

amplitude of the electric field of a light wave. 
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As the initial conditions for Eq. (10) we shall 
consider the axisymmetric beams with a spatial profile 
presented by the following generalized dependence: 
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where q is the parameter determining the beam 
shape; p = Rsh 

/R0 is the shading parameter; Rsh is 
the radius of the beam shadow part at the intensity 

level e–1, 0U�  is the initial radiation amplitude selected 

from the condition of equality of the total radiation 
energy of different profiles entering the medium. 
Equation (11) enables us to preset the beams of the 
Gaussian (g = 1, p = 0), tubular (ring) (q ≥ 1, p > 0), 
and super-Gaussian profiles (g > 1, p = 0). 

Figure 4 shows the results on comparison of free 
diffraction for the above-mentioned types of beams.  
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Fig. 4. The dependence of the effective radius (à) and mean 
intensity (b) of collimated beams of Gaussian (1), ring (2) 
with p = 0.5, and super-Gaussian (q = 8) cross section (3) 
on the space variable. 
 
Figure 4 shows the variation of the effective beam radius 

Reff(z) and its mean intensity 
2

0eff eff( ) /[ ( )]I z P R z= π  at 

the diffraction length LD = 2LR. The data presented 
in the figure are normalized, for the purpose of 
illustration, to the corresponding values of the Gaussian 

beam parameters in the beginning of the path: 

 0eff eff( ) ( ) ;R z R z R=  
2

eff eff( ) (8 ) ( )/ (1,0) .I z c I z U= π
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It is evident that the beam with quasiuniform 
intensity distribution has the least value of the initial 
effective radius and the highest mean intensity. 
Therefore, the diffraction of such a beam takes place 
more actively. On the contrary, tubular beams are 
characterized by a more smooth variation of intensity 
along the path as compared with a beam of Gaussian 
profile. This predetermines the differences in self-
focusing of such beams. 

Figure 5 shows the evolution of dimensional 
parameters of the beams of Gaussian, ring, and super-
Gaussian cross sections at their propagation in the 
air. The initial radiation power equaled five critical 
ones. Figure 5 shows that the nonlinear lens formed 
by a beam of super-Gaussian profile (zNF > 0.5) has 
the least focal length, then follows a Gaussian beam 
(zNF > 0.75), and finally the tubular beams have the 
longest self-focusing distance (zNF > 1.5). 
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Fig. 5. Effective (1, 3, 5) and geometric radii (2, 4, 6) of 
collimated beams of Gaussian (1, 2), ring (3, 4) with 
p = 0.5, and super-Gaussian (q = 8) cross section (5, 6) 
along the path at η = 5. 

 
If we introduce a concept of mean laser beam 

power Peff = IeffπR
2

0, then at a constant initial effective 
pulse duration Teff the values of Peff in the beginning 
of the propagation path for the beams of the ring and 
super-Gaussian profiles, as follows from Fig. 4, will 
differ from a Gaussian beam by two times toward a 
decrease in the power and its increase, respectively. 
Now using Eq. (3) and changing the real initial 
power P0 of a beam by its mean value Peff, we can 
obtain calculated values of the coordinate of the 
nonlinear focus of a beam of an arbitrary type: 
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Hence, for the tubular beam we have from Eq. (12) 

that effR = 1.29 and zNF = 1.43, and for the super-

Gaussian beam effR = 0.69 and zNF = 0.61 that correlates 

with the calculated data shown in Fig. 5. 



698   Atmos. Oceanic Opt.  /September  2006/  Vol. 19,  No. 9 A.A. Zemlyanov and Yu.E. Geints 
 

 

Note that an extraordinary behavior of a 

geometric radius of the ring beam along the path 
(curve 4 in Fig. 5) is associated with the 

transformation, as the diffraction is being developed, 

of the initially bimodal intensity distribution ( R  is 

determined by the ring radius, see Fig. 6) first to a 

corona-like profile ( R  is determined by the largest 

transverse scale) and then to a quasi-Lorentzian 
unimodal profile. 
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Fig. 6. The cross section of relative intensity of a collimated 
ring beam (p = 0.5) along the path at η = 5. 

 

Conclusion 
 
Thus for purposes of increasing the light energy 

concentration in the plane of the receiving equipment 
we have considered three methods of control of the 
spatial position of nonlinear focus of a femtosecond 
laser radiation pulse propagated through the 

atmosphere in the filamentation regime. These 
methods are the following: the spatial beam focusing, 
the frequency modulation of the radiation, and the 
beam profiling (pre-formation of the intensity 

distribution across the beam). For each of the 

considered versions the relations have been obtained, 
which enabled us to assess the coordinates of a 
nonlinear focus depending on the radiation parameters. 
  The following regularities have been determined: 

1. To obtain the nonlinear beam focus at a 
maximum distance from the beginning of the optical 
path, it is necessary either to use a previously 
defocused radiation (F < 0) or to use the frequency-
modulated radiation with the chirping parameter b < 0. 
In the first case the initial radiation power should 
essentially exceed its critical value for the Kerr self-
focusing in the medium (η >> 1), while in the second 
case this ratio should have the opposite sign: η < 1. 
  2. Another method of achieving the above-
mentioned goal consists in changing the initial 
transverse profile of the laser beam intensity. The 
beams with the ring intensity distribution possess the 
largest self-focusing distance, while the super-
Gaussian beams have the shortest nonlinear focus, all 
other factors being the same. 

3. For the first two versions of optimization of 
light energy transfer, from the above-mentioned ones, 
the limiting values exist restricting the range of 
variation of radiation parameters, using which the 
control of the nonlinear beam focus can be performed. 
Thus for spatial focusing such a limit is the value of 
the focal length Fc provided by Eq. (5), for the 
radiation modulation such a limit is the chirping 
parameter bc determined by the expression (6). 

All the above-mentioned versions of the control 
of the position zNF, in principle, can be reduced to 
the universal relationship, which is as follows 
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Here F is the initial curvature of the phase front, the 
beam intensity profile is accounted for by the initial 
effective radius Reff, and the radiation frequency 

modulation enters into the equation through the 
parameter η(z), defined by Eq. (7). 
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