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A minimization method for Zernike polynomials is developed and investigated by the example 

of a piezoceramic mirror. The method takes into account the geometrical characteristics of response 
functions and the contribution of each polynomial to the final error of the phase front approximation 
according to statistics of phase fluctuations. To approximate aberrations of the turbulent atmosphere 
and response functions, the basis of Zernike polynomials close to the optimum is used. The approach 
suggested allows one to simplify essentially the construction of the phase front sensor: to reduce the 
number of its channels in low-order adaptive optical systems. 

 

Introduction 
 

Flexible mirrors with a totally deformable surface 
are used in adaptive optical systems of aperture 
sensing and phase conjugation as an executing device 
for compensation of non-stationary phase distortions 
appeared in the process of the wave front propagation 
through an optically inhomogeneous medium.1–3 These 
mirrors are key elements of many modern systems for 
the radiation control and correction. Therefore, their 
capabilities determine to a large extent the parameters 
and the spectrum of solvable problems of the system.4,5 
  One of the basic requirements to the phase front 
corrector is a possibility of introducing necessary 
distortions into the incident radiation phase. Application 

of phase front correctors based on piezoelectric ceramic 
plates provides a better phase profile approximation 
as compared to the segmented corrector, because the 
phase distortions are usually smooth.3–5

 The adaptive 
mirrors based on piezoelectric plates, the mathematical 
apparatus for their description, as well as empirical 
profiles of responses of the flexible adaptive mirrors 
have been developed and investigated.3–6 

When producing adaptive optical systems of phase 
conjugation, the phase distribution on the adaptive 
optical system aperture is, as a rule, measured.7,8 

Then these measurements are recalculated into the 
basis of response functions of a flexible mirror by one 
of the numerical methods. Note that the universal 
expansion conforming to a number of optimality 
conditions is the Karhunen–Loeve expansion.2 It is 

characterized by the following properties meeting its 
optimality: the minimal root-mean-square error at 
confining the given number of terms in the infinite 
expansion series; deriving of the most amount of 
information (in comparison with any other expansion) 
about the function presented by the truncated series, 
no matter what number of terms is retained; and 
noncorrelatedness of expansion coefficients, which 
simplifies the further application of expansion results 
and their analysis. 

 However, the Karhunen–Loeve expansion has 

essential disadvantages: it requires a great body of  
a priori information (for example, knowledge of 
correlation functions of the measured characteristic), 
which is often absent or insufficient. The expansion 
eigenfunctions of the distorted field characteristics 
have a rather complex structure, and their practical 
realization as correcting devices with a variable 
function basis turns to be difficult.2 

To approximate turbulent atmospheric aberrations, 
the system of Zernike polynomials, orthogonal 
(orthonormalized) inside a unit circle (or a circle 
with the radius R) is close to optimum.1,2,9 In this 
case, it seems convenient to measure the phase 

distribution with the phase front sensor7,8 immediately 
in the form of a limited number of Zernike polynomials 
and then, with the expansion of response functions of 
a flexible adaptive mirror as a linear combination of 
the same polynomials in hand, to recalculate the 
corresponding control signals. It often turns out that 
the response functions of individual electrodes of 
phase front correctors are described precisely enough 
by a limited number of Zernike polynomials, and the 

contribution of these polynomials themselves into the 
final error of phase distribution approximation depends 
nonlinearly on the polynomial number. Thus, there 
appears a problem to choose properly a set of 
polynomials in order to organize the control in a 
particular adaptive optical system. 

This article presents the minimization technique 
for Zernike polynomials used in description of the 
flexible mirror profile, which takes into account the 
geometry of response functions and the contribution of 
each polynomial into the final error of the phase front 
approximation according to statistics of the phase 
fluctuations. 

 

1. Approximation of the corrector 
response functions 

 

To approximate the response function of a flexible 
adaptive mirror, we use a system of Zernike polynomials, 
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orthogonal (orthonormalized) inside a unit circle 

presented in polar coordinates r, θ (Refs. 1, 2, 9) 
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Quantities n and m are always integer and satisfy 
the condition n ≤ m, and the difference n – |m| is 
even. Index j is the ordinal number of the mode, 
depending on n and m. The orthogonality condition 
in a circle of the unit radius has the form  
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δj′ is the Kronecker symbol. 
The response functions of the phase corrector can 

be presented in the Zernike basis as 
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where aij is the coefficient of Zernike expansion at jth 
basis function for ith response function of the corrector 
Si(r, θ); N is the number of polynomials; M is the 
number of the corrector response functions. 

The phase front described by the corrector is  
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where bi are the coefficients of the phase front 
expansion in terms of the corrector response functions, 
i.å., the piezoelectric mirror. 

In fact, bi are the controlling signals in operation 
of the adaptive optical system. The phase front 
measured by the sensor7,8 in the Zernike basis has the 
following form: 

 meas
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where cj are coefficients of the phase front expansion 
in terms of Zernike polynomials (signals from the phase 
front sensor output). 

Having substituting Eq. (4) into Eq. (3), we obtain 
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It should be noted that the number of response 
functions M is a constructive parameter, and the 
number of polynomials N can be determined on the 
basis of well-known relations3: 
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where D is the aperture diameter; RSht is the Strehl 
number, determining the quality of the adaptive 
correction and chosen usually between 0.7 and 0.8; 
[*] is the operator of calculation of the number’s 
integer part; r0 is the Fried radius determined as2,3: 
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where L is the turbulent layer thickness; Ñ2
n(l) is the 

structural constant of the atmosphere; k1 = 2π/λ is 
the radiation wave number. 

To determine the expansion coefficients of the 
phase front in terms of the corrector bi response 
functions, equate the expression (5) to (6): 
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or, taking into account Eqs. (4) and (5): 
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The solution of the latter equation can be obtained 
by minimizing the following square form: 
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Having calculated the corresponding partial 
derivatives and equating them to zero: 
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we obtain the system of N linear equations: 
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where À1 is the matrix N×N; B, D are vector-columns 
of N size, and the elements À1 and D are determined as 
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Thus, the found coefficients of phase front 

expansion in terms of the corrector bi response 

functions can be used for organization of control in 
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some adaptive optical system, and À1 is, in fact, the 
matrix of transition between the Zernike basis and 
the basis of response functions. 

Note that the number of Zernike polynomials 

used in description of the corresponding response 
functions (5), can be decreased, taking into account 
their contribution into approximation of response 
function Si(r, θ) and the contribution of the 

corresponding polynomial into description of statistics 
of the phase fluctuations. In this case, the expenses 
for the building of adaptive optical system can be 
lowered, because at insignificant deterioration of the 
functioning quality within acceptable limits (Strehl 
number) the number of channels in the phase front 
sensor can be decreased. This is due to the fact that it 

is not necessary to calculate the expansion coefficients 
of the phase front cj, which further, owing to the 
construction of the used corrector, cannot be used in 
the building of the adaptive optical system. 

To do this, let us calculate by the least square 
method the coefficients of the response function Si(r, θ) 
expansion into the Zernike series in polar coordinates 
accurate to the Nth term, where N is predetermined 
by the expression (7). The Zernike basis in the given 
case is convenient due to the fact that both the response 
functions Si(r, θ) and statistics of phase atmospheric 
fluctuations can be presented in it.1,2 Let us minimize 
the quadratic form for the ith response function: 
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where wk are the experimentally measured values of 
the response functions in points of the mirror aperture; 
Zj(rk, θk) are the polynomial values in these points, 

respectively; 1,k K= ; K is the number of points, in 
which the response functions values are measured 
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As a result, a system of linear algebraic equations 
is obtained: 
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where matrix coefficients have the form 
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and the vector elements of free terms are determined 
by the relation 
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Due to orthogonality of the Zernike polynomials, 
the matrix M should have a diagonal form in the 
general case, when the number of measuring points K 
tends to infinity, i.å., at transition to the integral  
of the form (2). However, since the number of 
measurement points is finite, this condition is not 
fulfilled, and the matrix Ì, strictly speaking, is not 
diagonal. Thus, the conducted calculation experiment 
has shown that even at increase of the number of 
measurement points up to 105, the non-diagonal terms 
are presented in Ì: a38, a27, and so on., although 
their number is small. 

 As a result, solution of the system (18) can be 
obtained by any known method, for example, by the 
Gaussian method. However, under certain conditions 
(wrong choice of approximation points), the obtained 
system can be ill-posed (|M| ≈ 0). In this case, the 
problem of matrix inversion is unstable in terms of 
Adamar, and the Gaussian method is not applicable 
because of fast accumulation of the calculation error. 
Hence, when choosing the approximation grid, it is 
necessary to minimize the number of points, where 
the condition Zj(rk, θk) = 0 holds. This can be done 
through introduction of a small angular shift Δθ to 
the chosen coordinate system, when constructing the 
computational algorithm. 

 To estimate the necessary number of polynomials 
after restoration of the mirror profile, normalize the 
obtained coefficients: 
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Calculate the contribution of each term from the 
Zernike expansion into the quality of the Kolmogorov 
turbulence correction, using the expressions3 
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square residual error. Normalize the obtained differences: 
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The final expression for the normalized expansion 
coefficients with accounting for the weight coefficients 
of each polynomial contribution to the residual error 
of the phase front approximation has the form 

 n * , 1 *
.

j j
ij ija J a

+

= Δ  (22) 

Having chosen the threshold Δà
n

ij, it is possible 
to sequentially eliminate from the expression (3) the 
Zernike coefficients with minimal contribution. The 
decline in the phase front correction quality can be 
estimated by the following expression: 
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where the corresponding jth values of à
n

ij are replaced 
with 0; σ is the root-mean-square deviation. 

 

2. Numerical experiment 
 

To study the possibility of the proposed technique 
realization, we have used the experimental results for 
a flexible adaptive mirror based on the TsTBS-3 

piezoelectric ceramic plates.3,5
 The mirror reflecting 

surface of 50 mm in diameter is formed by silver 
electrodes, spray-coated on the plate surface of 1 mm 
thickness. Figure 1 presents a sample with five 
controlling electrodes. Measurements3,5 were carried 
out in planes à, b, c, and d at a step h of 5 mm. 
Consider the application of the proposed technique by 
an example of only four lateral controlling electrodes. 
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Fig.1. Flexible mirror construction: metallic base (1); 
piezoceramic plate (2); the controlling electrodes (3); 
terminals (4 and 5); support (6). 

Figure 2 presents the response profiles of the 
sample at voltage application to the control electrode 2. 
  In our case we consider the basis of nine Zernike 
polynomials in the polar coordinate system, because 

this basis is sufficient for compensation of main 
aberrations.3 The mean phase is not taken into account: 
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Fig. 2. Response profiles of a piezoceramic mirror. 
 
Based on the data obtained by the mathematical 

modeling and using the Mathcad 11, the mirror 
response function was built (see Fig. 1) by applying 
the control voltage to the lateral electrode. By the 
above-described method with the use of available 
experimental data,3,5 the Zernike expansion 

coefficients were derived for the control acts considered 
in the experiment. The obtained coefficients were 
normalized in accordance with Eqs. (19), (21), and 

(22). In such a way, the Zernike modes, most 
meaningful for compensation of atmospheric distortions 
used in description of response functions of the 

investigated piezoelectric mirror, were determined. The 
accepted Strehl number was equal to 0.8. The 
estimate has shown the modes 2, 3, 5, 8, and 9 to be 
most meaningful for quasi-optimum correction of the 
wave front. The calculation results are tabulated. 
 

 

 
 Mode number 

Coefficient 
2 3 4 5 6 7 8 9 10 

RMSD 

aij 0.254 0.254 –0.043 0.713 0 0.222 0.635 0.635 –0.222 – 

à
*

ij 0.104 0.104 –0.018 0.291 0 0.091 0.259 0.259 –0.091 – 

ΔJ*j,
 

j
 

+
 

1 0.407 0.222 0.127 0.080 0.054 0.039 0.029 0.023 0.018 – 

à
n

ij ⋅ 10
–2 (without 6) 4.227 2.305 –0.225 2.338 0 0.354 0.757 0.585 –0.162 0.892 

à
n

ij ⋅ 10
–2 (without 6, 10) 4.227 2.305 –0.225 2.338 0 0.354 0.757 0.585 0 0.921 

à
n

ij ⋅ 10
–2 (without 4, 6, 10) 4.227 2.305 0 2.338 0 0.354 0.757 0.585 0 0.922 

à
n

ij ⋅ 10
–2 (without 4, 6, 7, 10) 4.227 2.305 0 2.338 0 0 0.757 0.585 0 0.949 
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As follows from the table, the suggested approach 
allows a justified minimization of the number of 
Zernike polynomials in description of response 

functions of a piezoceramic mirror. Thus, elimination 
from the basis of expansion coefficients with numbers 

4, 6, and 10 leads to a 3% increase of RMSD, and 
elimination of expansion coefficients with numbers 4, 
6, 7, and 10 leads to a 6% increase of RMSD. Owing 
to the symmetry of control electrodes, the obtained 
results can be used for the rest of control electrodes 
as well. 

 

Conclusions 

 

We have developed and investigated the technique 
of minimization of the number of Zernike polynomials, 
used in description of the piezoelectric mirror profile.3,5 
The technique takes into account geometrical 
characteristics of the response functions and the 
contribution of each polynomial to the final error of 
phase front approximation in accordance with statistics 
of phase fluctuations. 

To approximate aberrations of the turbulent 
atmosphere and response functions, the basis of Zernike 
polynomials close to the optimum and orthogonal 
(orthonormalized) inside a unit circle was used. 
Accounting for the fact that statistics of phase 

fluctuations is known for the given basis, the suggested 
approach allows one to essentially simplify the 
construction of the phase front sensor, i.e., to decrease 
the number of its channels. In the case, when the 
phase front corrector peculiarities do not allow 
reproducing one or other Zernike modes, to improve 
the correction quality, it is possible to act in the  
 

following way. First, the number N of polynomials  
should be chosen, which is 20–30% more than in 
expression (7). Then, using the suggested technique, 
to minimize the basis, sequentially eliminating the 
polynomials giving the minimal contribution into the 
corrector response, taking into account statistics of 
turbulent distortions. 

 Since only a limited number of polynomials is 
used in practice, the suggested approach can be applied 
to low-order adaptive optical systems. 
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