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This paper presents details of a special algorithm that provides real-time estimates of ground-
to-space laser beam system pointing errors. The intent is to provide feedback for adaptive beam 
control so that such a system can reduce boresight, a static bias in pointing caused by misalignment 
or systemic static pointing errors. The algorithm requires only the received full aperture time-series 
signal and does not require imaging nor costly adaptive optics. Effects such as glints, speckle, and 
atmospheric scintillation do not corrupt the predictions from the algorithm. 

 

Introduction 

A ground-based laser system that projects a 
narrow beam at a space object is subject to pointing 
disturbances caused by atmospheric turbulence, 
vibrations, and static mechanical effects. Knowledge 
of the magnitude of these disturbances provides 
diagnostics for an experiment. In a laboratory, an 
imaging focal plane at the target can easily determine 
the shot-to-shot pointing errors. When only the 
received time-series signal at a large telescope 
(∼ 3.5 m) on the ground is recorded, such estimates 
were not available until the authors devised a method 
in 1997,1 which established that considerable 
information can be taken from the total received 
time-series signal from ground–space–ground 
illumination experiments. 

The algorithm developed by the authors and 
described here uses the χ2 statistical technique, which 
is ideal for estimation of goodness-of-fit for small 
data sets to known probability distributions. The 
method is to predetermine the theoretical probability 
distributions for data sets using Monte Carlo 
simulations for a range of pointing disturbances 
known as jitter and boresight, which are shot-by-shot 
pointing errors and offsets due to optical 
misalignment, respectively. The algorithm then uses 
these probability distributions to provide real-time 
simultaneous estimates of multiple parameters of a 
remote sensing target/atmosphere/laser system by 
testing the hypothesis that small sets (≥ 25) of 
measured return photons arise from one of these pre-
solved probability distributions.2 

Only the time-series return photon signal, 
collected over a large aperture (∼ 2–4 m), need to be 
recorded. Costly imaging systems and adaptive optics 
do not need to be employed; the main requirement is 
that the illuminating beam at the target must have a 
reasonable pattern (for example, Gaussian) or a beam 
full-width-at-half-maximum (FWHM) main lobe that 
is not badly corrupted by the atmosphere. Effects 
such as glints, speckle, and scintillation have been 

studied extensively. None of these corrupts the 
predictions of jitter or boresight. 

A scenario for a ground–space–ground laser 
illumination experiment is that a laser is fired 
through a ground telescope (transmitter) at an 
orbiting satellite. The reflected light is collected by a 
detector (receiver) on the ground. This received 
intensity is used to compute the pointing errors of 
the laser transmitter. Many ground–space–ground 
illumination experiments provide data sets that have 
been collected over a large portion of the satellite 
pass, where target characteristics, such as orientation 
and range, change appreciably. Over a short time 
however, these variables are nearly constant. Small 
data sets, collected over a short time, are needed for 
field estimation of laser system pointing. Figure 1 
illustrates the basic concept of a ground–space–
ground laser illumination experiment, including the 
laser transmitter, the output beam and its FWHM, 
and the beam reflected (dotted line) to the ground-
based receiver. 

A ground-to-space field experiment with a low 
earth orbit satellite will have an overall envelope for 
the received intensity. During the engagement, this 
envelope is bounded by an R4 curve, where R is the 
range, as the intensity at the target and at the 
receiver changes. In previous work,3 the range effect 
was accounted for via a standard radiometry equation 
in the theoretical probability distributions. Recently, 
simulations have shown that the assumption that R is 
constant does not effect the determination of the 
pointing errors, provided that the experimental data 
is collected reasonably fast. This allows the 
experimenters to eliminate the measurement of R. 
When variations in laser energy and beam quality 
have a long period relative to the experiment 
repetition rate, these variations can also be ignored. 
This also greatly simplifies the estimation of jitter 
and boresight and allows for near-real-time 
conclusions and feedback due to the very limited data 
requirements. Post processing, with a full accounting 
for range and laser variations, may be performed, 
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although analysis has shown correlation coefficients 
between estimates for raw data and fully corrected 
data exceed 0.95. 

 

 
 

Fig. 1. This figure shows a scenario for a ground–space–
ground laser illumination experiment. A laser is fired 
through a ground telescope (transmitter) at an orbiting 
satellite. The reflected light is collected by a detector 
(receiver) on the ground. This received time-series signal is 
used to compute the pointing errors of the laser transmitter. 
A typical range to a satellite is 106 m and the transmitter 
and receiver separation is 100 m. 

1. Pointing disturbances 

In the absence of pointing disturbances, the 
expected total photon returns will be constant (when 
corrected for range, laser energy variations, and 
target orientation changes). Telescope mechanical 
vibrations and the atmosphere introduce uncontrolled 
residual errors, even with a tracking system, that 
cause the laser to miss the target partially or 
completely. Two measures of disturbances, known as 
jitter and boresight, are described here. For more 
details, see previous papers.1,3 

Jitter is the term for shot-to-shot pointing errors 
arising from mechanical vibrations and residual 
tracking errors. It is modeled as a two-axis (x, y) 
uncorrelated error subject to 

 

Eq. (1), where σj is the 
single axis 1–σ specification and x and ó are angular 
units. During an experiment, it is assumed that the 
jitter is drawn from this distribution. On a shot-to-
shot basis, random draws were taken for the x-axis 
and the y-axis independently. The goal is 

 

to 
determine σj from only the received total time-series 
intensities: 
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Boresight is a fixed residual optical misalignment, or 
bias, during a specific engagement. Boresight errors 
may arise from incorrect commands to a beam 
steering mirror or an optical misalignment. Boresight 

may also arise from the simple geometry of an 
engagement: when a satellite is tracked while it is 
sunlit, but with the ground site in darkness (known 
as terminator mode), tracking using solar 
illumination will introduce an offset of about one-
half the size of the object. 

To simulate an engagement with jitter and 
boresight, it is a simple matter to replace, in Eq. (1), 
x with x – xb and ó with ó – ób where (õb, ób) is 
the boresight offset vector. This results in random 
draws of beam position that are centered on (õb, ób). 
The beam was offset by a random draw and the 
integrated intensity at target was recorded on a shot-
by-shot basis. In the absence of downlink variations, 
the intensity is proportional to the received signal 
and thus ideal for estimation by the pointing 
algorithm. 

2. The histogram approach using  
predetermined probability distributions 

The familiar χ2 test is used to compare small 
data sets with predetermined probability 
distributions. There are two fundamental equations 
used for analysis. The first is the equation for χ2: 
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where the Ni are the measured frequencies and the ni 
are the expected frequencies. For a typical use of the 
algorithm, i = 5 bins and intensities from 25 shots 
are used. The expected frequencies (ni) for data 
arising from the same distribution as the parent 
distribution are [5 5 5 5 5]. 

The second equation, closely associated with χ2, 
is the statistical confidence Q. The formal equation 
for Q involves the incomplete gamma function and is 
shown in Eq. (3): 
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Here ν is the number of degrees of freedom; for the 
i = 5 case, ν = 4. A set of 25 measured intensities 
that results in all Nj = 5 will yield χ2 = 0 and 
Q = 1. One would not reject the hypothesis that the 
data arose from the predetermined distribution. It is 
considered a perfect match. 

Fundamental to the application of the algorithm 
is that the data must follow reasonable statistics.4 
This is to be interpreted as follows: when Monte 
Carlo simulations are performed for a specific 
hypothesis and tested as to whether the data arose 
from the same hypothesis, the occurrences per bin 
should follow Gaussian, Poisson or, more generally, 
binomial statistics. Consider, for example, the case of 
tosses of a fair coin: the expected frequency of heads 
is five, but the distribution about the mean is 
Gaussian. 
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Figure 2 shows an example. The data in Fig. 2a 
shows the probability distribution for 105 simulated 
shots under the hypothesis that jitter is 
0.28 × FWHM, and boresight is 0.56 × FWHM.  
Figure 2a also shows the equal count bins that are 
the foundation of the algorithm. A value of zero on 
the x-axis of the histogram in Fig. 2a represents a 
total failure of the laser to illuminate the target, 
while a value of unity represents a perfect 
illumination of the target. The hypothesis presented 
represents excellent pointing and often occurred 
during recent US Air Force experiments. Figure 2b 
shows the result of 104 simulations of 25 shots having 
the same hypotheses as Fig. 2a. The expected 
frequency per bin is five and the distributions within 
each bin peak at five and follow binomial statistics, 
that is the mean μ = np = 5 and the variance 

σ2 = np(1 – p) = 4. (Here, p = 0.2 is the probability 
of falling into one bin, and n = 25 is the number of 
points.) 

 

 
a 

 
b 

Fig. 2. This figure shows one example of the underlying 
statistics of the histogram-matching algorithm. Figure a is a 
histogram of 105 simulated return intensities from a case 
with excellent pointing. The data is divided equally among 5 
bins for use in χ2 testing. Unity on the x-axis represents 
perfect pointing and zero represents a complete miss.  
Figure b shows the corresponding distribution within each 
bin obtained from 104 realizations of 25 shots. Each  
is a binomial distribution and peaks at the expected 
5 occurrences per bin. 

The algorithm provides estimates of pointing 
errors throughout a satellite pass using streaming 
data, that is, shots 1–25, 2–26, 3–27, etc. Pointing 
estimates are available after the first 25 shots. These 
nearly immediately available estimates show the true 
strength of the χ2-based algorithm. A running average 
is also provided, using 200 successive 25-point 
estimates to smooth the estimates. The pointing 
estimates from the algorithm, both for simulated data 
and laboratory experiments, have proven exceptional. 
 

3. Field data 

The InfraRed Astronomical Satellite (IRAS) was 
successfully illuminated during several experiments 
performed by the United States Air Force Research 
Laboratory at the Starfire Optical Range on Kirtland 
Air Force Base in New Mexico. The intensity of the 
photons measured during one pass by the receiver is 
shown in Fig. 3. The measured range to IRAS is also 
shown by the solid line. The R4 effect in the data is 
clearly visible. (The non-smooth nature of the range is 
due to the fact that the data is presented by shot 
number and the laser did not fire at a uniform 
repetition rate.) The tremendous variation in the 
signal from pointing errors is apparent. The beam 
FWHM is approximately 3.5 μrad, typical of a recent 
experiment, and a wave optics analysis established 
that the central lobe is nearly Gaussian. 

 

 
Shot 

Fig. 3. This shows the photons measured from an IRAS 
engagement (black dots) performed during a recent 
experiment in New Mexico, USA. The range (R) to the 
satellite is shown by the solid line and is not smooth since 
the data was recorded by shot number instead of time. More 
photons are measured as the satellite comes closer to the 
observer due to the R4 effect. 

 

For the Monte Carlo simulations used to pre-
determine probability distributions, the far-field 
beam pattern is either taken to be diffraction limited 
or computed from wave propagation through the 
atmosphere. Figure 4 shows a slice of a far-field beam 
with wavelength of 1 μm projected from a 0.25 m 
diameter telescope. The telescope is at an altitude of 
3 × 103 m, typical of a mountaintop observatory. The 
beam propagates through the atmosphere to 3 × 104 m, 
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then through vacuum to the satellite at 106 m. The 
atmosphere is modeled with 10 phase screens. The far-
field pattern has minimum degradation when 
compared to a purely vacuum propagation. This is 
typical of a high-altitude transmitter with a small 
(0.25 m) aperture. In this case, no transmitter 
adaptive optics was used. 

 

 
Fig. 4. This graph is a cross section through the 
(normalized) peak intensity of a far-field beam numerically 
propagated from a 3 × 103 m ground site to 106 m. The 
simulation wavelength was 1.0 μm and the aperture was 
0.25 m. Ten atmospheric phase screens were used. There is 
minimum corruption when compared to a vacuum-propagated, 
diffraction-limited beam. 

 

 
Fig. 5. This figure shows the jitter estimate for the IRAS 
engagement in Fig. 3. Each black dot shows the jitter 
estimate from a data set. Each data set is from 25 measured 
intensities. The 200-point running average is indicated by 
the solid line. The jitter estimate of approximately 0.6 μrad 
indicates very good atmospheric seeing and excellent tracker 
performance during the satellite pass. 

 
The jitter estimates obtained for this pass are 

shown in Fig. 5. Successive data sets of measured 
photon intensity from 25 shots (1–25, 2–26, 3–27...) 
were used for each jitter estimate and are shown as 
the black dots in Fig. 5 and for each boresight 
estimate in Fig. 6. The jitter estimates varied from 
0.4 μrad to 1.3 μrad, with a 200-point moving 
average of 0.6 μrad, or 0.17 × FWHM. This jitter is 

indicative of the excellent atmospheric seeing and 
exceptional tracker performance that approaches the 
anisoplanatic limit. The boresight estimate was 
approximately 2.5 μrad, or 0.71 × FWHM. 

 

 
Fig. 6. This plot shows the boresight estimate (black dots) 
for each data set (from 25 measured intensities) for the 
IRAS data shown in Fig. 3. The 200-point running average 
(solid line) indicates a large pointing offset of ∼ 2.5 μrad. 
This was determined to be due to the engagement geometry 
and passive tracking with the transmitter–satellite–sun 
angle at approximately 90°. 

 

The ground-to-space satellite experiment 
operated in terminator mode, where the 
transmitter/receiver site was in the dark, but the 
satellite was sunlit, shortly after sunset or shortly 
before sunrise. Using solar illumination, the tracker 
pointed at the brightest region of the satellite, which 
is also referred to as the solar illumination center-of-
mass (COM). Since the earth site-to-satellite-to-sun 
angle is approximately 90°, only one side of the 
satellite is illuminated. Thus, the solar COM is offset 
from the satellite physical center by half its size. This 
introduces an immediate pointing bias, shown in 
Fig. 6. A correction for this bias is shown in Fig. 7.  
 

 
Fig. 7. This plot shows each data set (25 point) boresight 
estimate (black dots) for the IRAS data shown in Fig. 3, 
but with a 2 μrad solar offset included in the model. The 
200-point running average (solid line) indicates a small 
pointing offset of ∼ 0.5 μrad. 
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When a 2 μrad offset was included in the model,  
a 0.5 μrad pointing boresight resulted. 

4. Noise sources 

Experiments that transmit a laser to a remote 
object encounter three types of noise in addition to 
pointing errors. These are referred to as speckle, 
atmospheric scintillation, and glints. Speckle arises 
from the self-interference of a coherent laser light as 
it propagates from an optically rough (Lambertian) 
target to the ground receiver. Atmospheric 
scintillation occurs due to refraction of the reflected 
beam as it passes through the atmosphere. Different 
path lengths cause constructive and destructive 
interference. Numerous experts have studied the 
theory of speckle and scintillation.5 Glints are 
transient effects caused by the chance alignment 
among the transmitted beam, a flat surface or retro-
reflector on the target, and the receiver. The three 
noise sources have been shown to have no deleterious 
affect on pointing estimation. 

4.1. Speckle 

Speckle arises when a coherent laser reflects off 
an optically rough surface, that is, a surface with a 
peak-to-valley deviation of about one wavelength. 
Such surfaces are referred to as Lambertian. Nominal 
speckle size is Rλ/Dtarg, where R is the range, λ is the 
laser wavelength, and Dtarg is the target dimension. For 
example, when illuminated by a visible laser a target 
with dimension 2 m at a range of 106 m will produce 
speckles on the ground of about 0.22 m. The issue is 
to determine how a speckle pattern affects the 
received intensity in the presence of pointing errors. 
 To simulate a speckle pattern numerically, a 
square target of 128 × 128 pixels on a 2048 × 2048 
grid was created with a uniform intensity and 
random pixel-by-pixel phase. A random phase was 
drawn for each simulated shot, providing a random 
complex field across the object on a shot-by-shot 
basis. This emulates the motion of the object relative 
to the receiver. Propagation to the receiver was 
performed using standard Fourier optical analysis. 
On a shot-to-shot basis, the receiver measured the 
total intensity of each speckle pattern under the 
assumption of perfect beam pointing. The total 
aperture time-series data was then normalized by the 
intensity from a perfectly pointed shot. This provides 
a probability distribution that represents the speckle 
noise integrated by the aperture. For simulated data 
with specified pointing errors, the aperture 
integration noise is applied to the simulated returns. 
The resulting data is processed to provide pointing 
estimates. Speckle can corrupt focal plane data. The 
fact that the pointing algorithm does not require a 
focal plane allows for aperture averaging of the 
speckle on a shot-by-shot basis. For the example 
above, there are 16 speckles (linearly) across the 
aperture. The aperture averaging results in a 

Gaussian distribution about unity with a 1 – σ 
standard deviation less than 0.03. Including this noise 
in simulated data results in estimates of jitter and 
boresight that are virtually identical to estimates 
without speckle noise. 

While imaging systems, whether focal- or pupil-
plane, will be corrupted by speckle, the algorithm 
developed by the authors is not affected. The 
example discussed was for 16 speckles (linearly) 
across the aperture but with a few as two speckles 
across the aperture, good pointing estimates may be 
obtained, although with a definable and repeatable 
bias. Such a bias is not an impediment to pointing 
estimation as it may be accounted for in software. 

4.2. Atmospheric scintillation 

A second noise source is known as scintillation. 
This occurs due to the interference of multiple paths 
through atmospheric refraction as the beam 
propagates to the ground. Scintillation patterns were 
obtained using a commercially available wave 
propagation code. For this analysis, a uniform beam 
was propagated from 3 × 104 m to a receiver at an 
altitude of 3 × 103 m. Ten phase screens were used to 
emulate a typical high mountain observatory. One 
thousand shots were simulated for the analysis, each 
with a new randomly chosen set of phase screens to 
ensure independent results. Total intensity was 
calculated across a 3.5 m aperture. The values were 
normalized to the mean of the 103 realizations. The 
total variation, less than 2%, was found to be less 
than that from speckle noise and has no effect on 
pointing estimation. 

4.3. Glints 

Glints are the brighter than expected returns 
caused by the chance alignment of a flat surface or 
natural retro-reflector with the transmitter and 
receiver. Flat surfaces can give rise to returns 
approximately an order of magnitude greater than 
expected and retro-reflectors can produce returns 
several orders of magnitude higher than expected. 
Glints are by nature transient, often occurring for 
only one illumination as the target rotates relative to 
the ground site. Many glints were observed during 
recent field experiments. Because the algorithm uses 
25 and 200 points for estimates, neither type of glint 
has any impact on pointing estimation. 

Conclusions 

This paper has described a software algorithm, 
under development by the authors, which has the 
capability to provide real-time estimates of laser 
system pointing performance such as jitter and 
boresight, and to provide feedback for adaptive 
control of experiments. The algorithm has been 
repeatedly verified via simulations and in the 
laboratory, and has been used in prototype-form for 
field analysis. The algorithm is resilient to speckle, 
scintillation, and the effects of glints because it uses 
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25-point data set of the full aperture integrated time-
series. It does not require a complicated imaging or 
adaptive optics system. Forthcoming efforts include 
developing the algorithm as a commercial package, 
with links to external experiments. 
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