
N.V. Malai et al. Vol. 19,  No. 5 /May  2006/ Atmos. Oceanic Opt.  367 
 

0235-6880/06/05  367-06  $02.00  © 2006 Institute of Atmospheric Optics 
 

 
 

Specific features of photophoretic motion  
of moderately large spherical aerosol particles 

 

N.V. Malai, E.R. Shchukin, A.A. Pleskanev, and A.A. Stukalov 
 

Belgorod State University, Belgorod 
 

Received January 25, 2005 
 

We use Stokes approximation to describe theoretically the photophoretic motion of a solid 
moderately large aerosol particle of spherical shape at small relative drops of temperature in its 
neighborhood. By solving equations of gas dynamics, analytical expressions have been obtained for 
the photophoretic force and rate of photophoresis, taking into account the effect of medium motion. 
 

 

Introduction 
 

The phenomenon of photophoresis in gas consists 
in the motion of aerosol particles in the field  

of electromagnetic radiation under the impact of 
radiometric force. Photophoresis can play a significant 
role in atmospheric processes,1–3 when applied to 
purification of industrial gases, creation of installations 
designed for selective size segregation of particles, etc. 
  The mechanism of photophoresis can be briefly 
described as follows. Interaction of electromagnetic 
radiation with a particle yields a release of thermal 
energy with a certain volume density qi, which 

nonuniformly heats the particle. Gas molecules, 
surrounding the particle, collide with the particle 
surface and upon reflection from warmer side of the 
particle they move faster than after reflection from 
its colder side. As a result, the particle acquires non-
compensated impulse directed from warm to cold 
particle side. Depending on the size and optical 
properties of the particulate matter, any particle side, 
either illuminated or shadowed one, may get warmer. 
Therefore, there may be both positive (particle motion 
along the direction of incident light propagation), and 
negative photophoresis. Moreover, if the radiative flux 
is nonuniform over cross section, there may appear 
particle motion in gas, perpendicular to the direction 
of propagation of incident electromagnetic radiation.4 

  Other authors, Oseen5
 and Praudman and 

Pearson6 for hydrodynamical problem, and Acrivos 
and Taylor7 for thermal problem, have shown that, 
far away from the sphere, the inertial and convective 
terms are of the same order of magnitude as terms of 
molecular transfer. Therefore, usual method of series 
expansion over small parameter gives the known error, 
because already in the second approximation it does 

not provide satisfactory fulfillment of the boundary 
conditions at infinity and, hence, an exact unique 
solution, uniformly valid in the entire flow region. 
  So far, the published works in the theory of 
photophoretic motion for small relative temperature 
drops8–15 ignored the influence of convective terms  
of heat conduction (motion of the medium) on 

photophoresis. In this paper, the method of matched 

asymptotic expansions is used to estimate this 

influence. 
 

1. Statement of the problem 
 
Consider a solid, moderately large, spherical 

aerosol particle with the radius R suspended in a gas 
with temperature T∞, density ρe, and viscosity μe. To 
classify aerosol particles by their sizes, Knudsen 
criterion Kn = λ/R is used, where λ is average  
free path of molecules of the gas mixture. Particles  
are called large if Kn ≤ 0.01, moderately large if 
0.01 ≤ Kn ≤ 0.3, and small when Kn >> 1. Let an 
electromagnetic radiation be incident on the particle 
and nonuniformly heat it. Gas interacting with 
nonuniformly heated surface begins to move along 
the surface along the direction of temperature increase. 
This phenomenon is called thermal gas sliding. The 
thermal sliding brings about the appearance of 
photophoretic force and viscous drag force of the 
medium, and particle begins to move uniformly. The 
velocity of uniform particle motion is called the 
photophoretic velocity (Uph). 

In a theoretical description of the process of 
photophoretic particle motion, we will assume that, 
in virtue of smallness of thermal and diffusion 

relaxation times, the process of heat transfer in the 
particle – gas medium system is stationary. Particle 
motion takes place for small Peclet and Reynolds 
numbers and small relative temperature drops in the 
particle neighborhood, i.e., (Tå – T∞)/T∞ << 1. When 
this condition is satisfied, the coefficients of heat 
conductivity and dynamic and kinetic viscosity  
can be considered constant. The problem is solved  
by hydrodynamic method, i.e., the equations of 
hydrodynamics are solved with the corresponding 
boundary conditions, and the particle is considered to 
have uniform composition. 

The particle motion is conveniently described in 
spherical coordinate system r, θ, ϕ, associated with 
the center of mass of aerosol particle. The OZ-axis is 
oriented along the direction of propagation of 
uniform radiative flux with the intensity I0. In this 
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case, the volume density of internal heat sources has 
the standard form 

 i 0 0( ) 2 ( ),q r kk I B= π r  (1) 

where 
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is dimensionless source function of electromagnetic 
energy in the case of nonpolarized incident radiation; 
E(r, θ, ϕ) is the local directionality of electrical field 
inside the particle; E0 is the electric field strength  
of the incident wave; k0 = 2π/λ0 is the wave number; 
λ0 is the wavelength; m = n + ik is the complex 
refractive index of the particulate matter. Usually,  
to calculate the dimensionless source function B(r), 
Mie solution for the internal field is used (see, e.g., 
Ref. 16). Since the coordinate system is associated 
with the center of moving aerosol particle, all we 
have to do is to analyze streamlining of particle by 
an infinite plane-parallel flow; for which it is 
assumed that the gas velocity at infinity equals the 
photophoresis rate, taken with the opposite sign, i.e., 
U∞ = –Uph. 

Under the above assumptions, the equations of 
hydrodynamics and heat conductivity and boundary 
conditions take the following form 
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Here, e
rU  and eUθ  are the components of gas mass 

velocity Ue; cpe is the heat capacity under constant 

pressure; *
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λe and λi are the heat conductivity coefficients of gas 
and particle; μe and νe are the coefficients of 
dynamical and kinematic gas viscosity; and from here 
on the subscripts å and i stand for gas and particle, 
respectively, while subscript ∞ is for values of physical 
quantities characterizing the external medium in the 
unperturbed flow. 

In formulation of boundary conditions for 
moderately large particles, the entire volume occupied 
by the gas is conventionally divided into two parts: 
(1) Knudsen layer, representing the portion of gas 
with the thickness of the order of free path in the 
immediate vicinity of a particle surface; and (2) the 
rest gas. Flow in the gas volume outside the kinetic 
layer is described by usual hydrodynamical equations; 
while in the Knudsen layer boundary conditions for 
hydrodynamic equations are specified. To describe 
motion of gas in this layer, it is necessary to solve 
the kinetic equation.17,18 At the same time, it is 
required to take into account all corrections to velocity 
of aerosol particle, linear relative to Knudsen number. 
Boundary conditions (4) on the surface of aerosol 
particle assume that: (1) temperature jump is present 
on particle surface, proportional to the coefficient 
ÑÒ; and (2) for the heat flux and radial velocity 
component e

rU  there exists a discontinuity of radial 
heat flux due to spread of the part of the flux over 

the Knudsen layer, proportional, respectively, to 
coefficients qÑΤ  and VCΤ . 

The latter boundary condition suggests that there 
are four effects contributing to the velocity, with 

which gas slides along spherical surface of small 
curvature. First effect is caused by nonuniformity of 
gas temperature distribution over the spherical surface 

(thermal sliding). The associated characteristics are 
the coefficient KTS of thermal siding over the plane 
surface and coefficient RT′β  of KTS correction, 
introduced to take into account the presence of curved 

surface. The second effect constitutes isothermal 
sliding of gas and is characterized by the coefficient 
Cm. Third effect results from sliding of gas due to 
nonuniformity of temperature gradient in the Knudsen 
layer caused by the presence of curved surface.  
The associated characteristic of this effect is βRT 
coefficient. Fourth effect accounts for the Barnett gas 
sliding and is proportional to the coefficient B

RT.β  
Expressions for the coefficients KTS, mC , CT, q ,ÑΤ  

V,CΤ  RT,′β  βRT, and B
RTβ  are derived by the methods 

of kinetic theory of gases and can be found in 
Refs. 17 and 18. 

At large distance from a particle (r → ∞), 
boundary conditions (5) are valid, while the finiteness 
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of physical quantities characterizing the particle at 
r → 0 is accounted for in expression (6). 

Let us transform equations (2) and (3) and the 
boundary conditions (4)–(6) to a dimensionless form, 
by introducing dimensionless coordinate, velocity, 
and temperature as follows: yk = xk/R, t = T/T∞, 
Ve = Ue/U∞. 

For Re = (ρeU∞R)/μe << 1, the incoming flow 
produces only disturbing effect; therefore, the solution 
of hydrodynamic equations should be sought in  
the form 
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e e e
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V V V
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The solution of equation, describing temperature 
distribution outside the particle, will be determined 
by the method of matched asymptotic expansions.19,20 
The inner and outer asymptotic expansions of 
dimensionless temperature are represented as 
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where ξ = εy is the “compressed” radial coordinate19 
(y = x/R). 

Moreover, it is required that 
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The missing boundary conditions for inner and 
outer expansions follow from condition of identity of 
the extension of both asymptotic expansions into 
certain intermediate region, i.e., 

 *
e e( , ) ( 0, ).t y t→ ∞ θ = ξ → θ  (10) 

Asymptotic expansion of solution inside the 
particle, as seen from the boundary conditions on the 
particle surface (4), should be sought in the form 
analogous to expression (8), namely: 
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As to the functions fn(ε) 
and *( ),nf ε  the order of 

their smallness in ε increases with the growth of ï. 
  Taking into consideration the compressed radial 
coordinate, for the dimensionless temperature *

et  we 
have the following equation: 

   
* * *

* * *e e
ePr ,r

t V t
V tθ⎛ ⎞∂ ∂

+ = Δ⎜ ⎟
∂ξ ξ ∂θ⎝ ⎠

 *
e 1t →  for ξ → ∞  (12) 

and 

 * *
e e( , ) ( , ) ....zξ θ = + ε ξ θ +V n V  (13) 

Here Δ* is the axially symmetric Laplace operator 
obtained from Δ by replacing y with ξ; * *( , ),r rV V= ξ θ  

* *( , );V Vθ θ= ξ θ  Pr is Prandtl number; and nz is unit 
vector along the direction of OZ-axis. 

The form of boundary conditions (4)–(6) indicates 
that expressions for components of mass velocity e

rV  
and eVθ  are sought in the form of expansions in 
Legendre and Gegenbauer polynomials.21 

 

2. Temperature fields outside  
and inside a particle 

 
In determination of photophoretic force and 

velocity, we will confine ourselves to corrections of 
the first order of the smallness parameter ε. For their 
determination, it is necessary to know the temperature 
fields outside and inside the particle. Successively 
determining zero- and first-order terms of the 
expansion, and taking into account the condition of 
matching the inner and outer expansions, by analogy 
with Refs. 20 and 21 we obtain: 

 ( )* * *
e e0 e1, ,t t t ′ξ θ = + ε  e e0 e1( , ) ,t y t tθ = + ε  

 i i0 i1( , ) ,t y t tθ = + ε  *
e0 1,t =  0

e0( ) 1 ,t y
y
Γ

= +  

 ( )* 0
e1

Pr
( , ) exp 1 ,

2
t x

Γ ⎧ ⎫ξ θ = ξ −⎨ ⎬
ξ ⎩ ⎭

 cos ,x = θ  

 ( ) 0
i0 0 i 0

i

1 1
d d d ,

4
V V V

f
t y B q V y f V

R T y y y∞
= + + −

π λ ∫ ∫ ∫  

 ( ) 1 2
e1 1 2 3

1
( , ) – cos ,

2 2 24
A A

t y y
y yy y

⎧ ⎫⎛ ⎞ω Γ⎪ ⎪θ = Γ − + + ω + θ⎜ ⎟⎨ ⎬
⎪ ⎪⎝ ⎠⎩ ⎭

 

 0 Pr,ω = Γ  / ,y r R=  

 

i1 2

1
12 2 2

i 1 1

( ) cos

1 1
d – d ,

33

y y

t y

RJ f
By y y f y

T y y y∞

= Γ + θ ×

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥× + +
⎜ ⎟λ ⎢ ⎥⎣ ⎦⎝ ⎠

∫ ∫
 

 34
,

3
V R= π  

where 

 
12

2
i

i –1

2 1
( ) – ( , ) ( )d ;

2
n n

R n
f y y q r P x x

T

+

∞

+
= θ

λ ∫  

 i
1

d
V

J q z V
V

= ∫  

is the dipole moment of the density of heat sources; 
and Pn(x) are Legendre polynomials. 

Integration constants entering into Eq. (14) are 
determined from the boundary conditions on the 
particle surface, Eq. (4). 

(14)
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3. Determination of photophoretic 
force and velocity 

 
General solution of the hydrodynamic equations, 

satisfying the finiteness for r → ∞, has the form22,23: 
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The resulting force acting on the particle is 
determined by integration of stress tensor over the 
surface of aerosol particle; it has the form22: 

 2–4 ,zF RU A∞= π  (16) 

where the coefficient À2 is determined from boundary 
conditions on the surface of the aerosol particle (4). 
  Taking into consideration the form of the 
coefficient À2, the resulting force acting on the solid, 
large, spherical aerosol particle at small relative 
temperature drops in its neighborhood, will be a sum 
of the viscous drag force Fμ, photophoretic force Fph 
proportional to the dipole moment J, and the force 
Fmh caused by motion of the medium (i.e., taking 
into account the convective terms in the equation of 
heat conductivity): 
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from the following formulas: 
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Here subscript s stands for values of physical quantities 
taken for the mean relative temperature of particle 
surface es e0 1,yt t ==  determined from the formula 

 es i
e

1
1 ( , )d .

4
V

t q r V
R T∞

= + θ
π λ ∫  

Equating the resulting force to zero, we obtain 
general equation for velocity of ordered particle 

motion, which will be the sum of photophoretic 
velocity Uph and velocity Umh caused by the motion 
of the medium: 
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4. Analysis of the results obtained 
 
From formulas (17) and (18) it is seen that both 

the magnitude and direction of the force F(1) and 
velocity Up undergo the influence by the magnitude 
and direction of dipole moment of the density of heat 

sources i
1

d .
V

J q z V
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In addition, the F(1) and Up quantities depend 
substantially on the heat conductivity of the 

particulate matter as well. For λi → ∞, and for fixed 
dipole moment, F(1) and Up tend to zero. When 
ω = 0, we obtain expression for pure photophoresis of 
moderately large particle.14 

To estimate the influence of the medium on 
photophoresis of moderately large spherical aerosol 
particle, we will consider the simplest case when the 
particle absorbs radiation as a blackbody. The 
absorption takes place in a thin layer of δR << R 
thickness, adjacent to the heated part of the particle 
surface. Furthermore, the density of heat sources inside 
the layer of δR thickness is determined from the 
formula 
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where I0 is the intensity of incident radiation, related 
to the temperature of particle surface by: Ts = 
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Taking this into account, we obtain the following 
formulas: 
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To illustrate the contribution of motion of the 
medium to the photophoretic rate of solid moderately 
large spherical aerosol particle, Figure 1 presents  

the plots of the functions *
phh  versus the intensity of 

incident radiation. 

 

 

Fig. 1. 

 
The numerical estimates were made for particles 

of borated graphite (λi = 55 W/(m ⋅ deg), curve 1) 
and soot (λi = 0.029 W/(m ⋅ deg), curve 2), suspended 
in air at T∞ = 273 K, R = 2 μm, and Ð∞ = 105 Pa. 
 

Figures 2 and 3 present the plots of the function 
*
phh  versus Knudsen number (0.05 ≤ Kn ≤ 0.3) at 

R = 10 μm (Fig. 2), R = 20 μm (Fig. 3), Ts = 293 K, 
313 K for particles of graphite (curves 2 and 3) and 
soot (curves 1 and 4), respectively. From this plots it 
is seen that inclusion of the motion of the medium 
for particles with high heat conductivity (graphite) 
has the consequence that the photophoresis rate faster 
transits to the region of the so-called “negative” 
photophoresis. This may be one of the reasons for 
particle levitation in the stratosphere.10 

 
 

 
 

 
Fig. 2. 

 

 
 

 
Fig. 3. 
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