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A number of exact solutions of the one-dimensional turbulent diffusion equation have been 

obtained using a second order closure method. Obtained results have been compared with solutions of 
the semiempirical equation closed with the help of the simplest gradient hypothesis. Analysis of 
obtained results has been performed. 

 
The semiempirical turbulent diffusion equation  

is widely used for description of the process of 
atmospheric impurities propagation1: 
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where C  is the average impurity concentration; iU  is 
the average ith component of wind speed; qi is the 

ith component of turbulent impurity flow; Q  describes 

the impurity sources. An over-bar denotes averaging 
over statistical ensemble and repeating indices – 
summing. 

Equation (1) illustrates the common property of 
all averaged equations of turbulent medium mechanics: 
it is nonclosed as it involves unknown variables qi. 
By analogy with the Brownian diffusion process, 
Eq. (1) is usually closed using the semiempirical 
gradient hypothesis 
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Thus, instead of three unknown components of 
turbulent flow in the general case, six unknown 
variables Kij, commonly called turbulent diffusion 
coefficients, are to be known. Definition of these 
variables is a complicated problem. The spectrum of 
such problems is considered in Refs. 1 and 2. Attempts 
of rigorous proof of the gradient hypothesis (2) have 
been made in Ref. 3. In Ref. 4, an approach allowing 

estimation of the turbulent diffusion coefficients is 

experimentally justified using a recursive technique.3 
Justification of the coefficients proportionality to 

respective components of the Reynolds viscous stress 
tensor is given as well. However, when using the 
semiempirical equation in practice, objective definition 
of the turbulent diffusion coefficients seems to be the 
main weakness of the semiempirical approach. 

The second order closure methods relates to 

solution of equations for impurity flows.5,6
 These 

equations are also nonclosed and involve some 

unknown variables, which are excluded from the 
obtained equations with the use of the simplest 

hypothesis based on dimensionality analysis, tensor 
structure of equations, and some other physical 
reasons. So closed equations involve constants, which 
values can be estimated experimentally. 

A number of exact solutions of the one-
dimensional turbulent diffusion equation have been 
obtained in the work using a second order closure 
method.  

Equations for turbulent flows qi are derived 
from the medium continuity equation by multiplying 
its terms by unaveraged components of wind speed Ui 
(Ref. 6) and following averaging over statistical 
ensemble. After calculations with the use of the 
Navier–Stokes equation, we obtain: 
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where 
ˆ

,iU  
ˆ

,C  and ˆp  are the pulsations of components 

of wind speed, concentration, and pressure, respectively; 
ρ is the air density; ν is the air kinematic viscosity; δij 
is the Kronecker symbol; and Δ is the Laplace operator. 
  The first term in Eq. (3) describes time variations 
of turbulent flow; the second one is advective, and 
the third one is diffused. Next two terms are elements 
of the flow generation by averaged characteristics. 
The next to last term describes the flow generation 
by correlations of pressure pulsations with gradients 
of concentration pulsations. And the last one reflects 
the presence of viscous dissipation. The third, next to 
last, and the last terms are to be closed in Eq. (3). 
  As a rule, the closure procedure of Eq. (3) is the 

following. The tensor variable 
ˆ ˆν Δ iC U  has an odd 

number of indices so it should reverse its sign when 
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reflecting. An assumption of local isotropy of turbulence 

should lead to tensor invariability by reflecting. 
Hence, the term responsible for viscous dissipation is 
equal to zero under such assumption. 

Usually the diffused term is approximated by 
the gradient equation6 
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where b2 and ε are the kinetic energy of turbulence 
and the rate of its dissipation, respectively. Their 
ratio is some kind of speed scale. The constant C1 is 
estimated to be equal to 0.11.6 

Finally, the following approximation is used for 
the term remaining nonclosed6: 
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According to different authors,5,6 empirical constants 
C2 = 0.33–0.5 and C3 = 3.0–3.2. 

Thus, the equations for turbulent flow 

components take the form 
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As is known, the time scale as the ratio of the 

dispersion of concentration pulsations σ2

c  to the rate 

of its dissipation εc is more reasonable to use in 
closure equations instead of the b2-to-ε ratio.6 If to 
introduce the ratio of the two specified scales 

= εσ ε
2 2 –1

c c( ) ,R b  then it is necessary to divide C1 to 

R and multiply C3 by the same value in Eq. (4). 
When approximating the diffused term in the 

equation for dispersion of impurity concentration 
pulsations the following equation for the turbulent 
diffusion coefficients is obtained6: 
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Assuming the time scale to be small and neglecting 

the terms of 2-order infinitesimal in Eq. (4), Eq. (5) 
with the coefficient of proportionality C4 = R/C3 is 
to be obtained. According to some literature data, 
C4 = 0.13.6 This implies the estimation R ≈ 0.4. Thus, 
closure of the semiempirical equation of turbulent 
diffusion with the help of Eq. (2) and the set of 
equations (4) gives virtually the same results at small 
values of the characteristic time scale of concentration 
(rate) pulsations. At the same time, the request for 
times of impurity propagation to be much greater 
than the considered time scales4 is the condition of 
applicability of the semiempirical equation. 

Consider other the simplest one-dimensional cases 
of diffusion. Using scales of time, length, concentration, 
and flow: 
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is obtained, where the previous designations are used 

for dimensionless variables and = σuI U  is the 

turbulence intensity (σu is the standard deviation of 
wind speed pulsations).  

In case of a stationary point source of impurity, 
Eq. (6) has no terms with time derivatives. Locate the 

source in a point with the coordinate õ = 0. Define 

the source term as = δ0 ( ),Q Q x  where Q0 = const. 

Combining Eqs. (6), obtain 
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The last term of Eq. (7) describes the impurity flow 
“decomposition.” Therefore, zero boundary conditions 

at infinity ±∞ = ±∞ =( ) ( ) 0
x

C q  are admissible. A 

solution of Eq. (7) can be obtained employing 

continuity of the impurity flow at the point x = 0 
(see Ref. 7):  

1
0

1 2
2 2 2

21 3

1 2
2 2

2 3
1,2 2 2 2

1 1 1

exp( ), 0
;

exp( ), 0(1 ) 8

1 1
( ) .
4 2 4

x

x xQ
q

x xI C C I

I C I

C I C I C I

−α >⎧⎪
= − ⎨

⎡ ⎤ +α <⎪− + ⎩⎣ ⎦

⎡ ⎤− −
α = +⎢ ⎥

⎣ ⎦
∓

 (8) 

It is also follows from Eq. (7) that = −( ) ( ).
x

C x q x  

The solution of semiempirical Eq. (1) closed with the 
gradient hypothesis (2) has the following form7: 
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Note, that there is no impurity decomposition in 
Eq. (1), therefore the impurity concentration is 
constant at x > 0, as is seen from Eq. (9). 

Thus, solutions for a stationary point source, 
obtained with the use of the considered closure 
methods, have vital difference at x > 0. The solution 
of Eqs. (6) at x < 0 and C1C3 < 1/2 diminishes 
faster that the solution of the semiempirical equation 
closed with the gradient hypothesis (2). 

In case of an instantaneous point source, the 
change of variables z = x – t and τ = t is convenient. 
To obtain the solution, cast out the diffused term of 
3-order infinitesimal relative to the above-mentioned 
time scales in Eq. (6). The resulting system is 
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The following system of initial and boundary 
conditions corresponds to the preset source: 
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The problem can be solved by the Laplace over-
time transform method. For that, differentiate  
the second equation with respect to z and substitute  
the first equation of Eqs. (10) into the obtained 

expression. Then 
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In view of the equation following from the first 
equation of the system and the initial conditions 
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where I0 and I1 are the Bessel functions of an 
imaginary argument. 

The solutions obtained are solutions of the 

telegraph equation, found by Monin in Ref. 1; in 

contrast to the semiempirical equation, closed with 

Eq. (2), it describes the impurity propagation with a 
finite speed. That is, an impurity cloud produced by a 
source has clearly pronounced boundaries, which 
move in the transformed coordinate system with the 
speed ±I; here “+” corresponds to the right boundary 
of the cloud and “–“ to the left one. The redirecting 

frequency of impurity particles a = C3/2 (it has been 
introduced by Monin in deriving the telegraph 

equation) and the average absolute speed of the 
particles W = I (see Ref. 1). The solution of Eq. (1) 
closed with Eq. (2) is well known and in this case 
has the following form1: 
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According to Eq. (2), the impurity flow  
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Solutions (12) and (13) for different values of a 
and W is compared in details in Ref. 1. 

An analysis of a formal solution of the one-
dimensional impurity flow equation is of interest. For 
that, consider the set of equations (6) with the initial 
and boundary conditions set for Eqs. (10). Excluding 
the advective terms via the change of variables z = x – t 
and τ = t and performing the change q

x = qexp(–C3τ), 
we obtain the equation 
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which can be solved using the Green’s function8: 
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As is follows from analysis of Eq. (15), 
turbulent flow of impurity at the point z at the time 
τ is determined by values of impurity concentration 
taken at all points of the axis at all previous time 
points. That is, when closing with the second order 
methods, impurity flow is not a locally defined variable 
contrary to Eq. (2). The nonlocal properties are to 
manifest at small propagation times or at large values 
of the time scale considered above. 

The Green’s function with an exponential 
multiplier in Eq. (15) is a pulse characteristic of some 
spatiotemporal filter, which provides transformation 
of the concentration expectancy of impurity to its 
turbulent flow. An expression in the similar form has 
been obtained by Voloshchuk9

 but using different 

approaches. Series of papers devoted to nonlocal 
properties of turbulence impurity flows have been 
published in Ref. 10. However, the level of 
development of nonlocal closure methods is insufficient 
yet for practical use. 

Thus, consideration of the simplest solutions of 
the semiempirical turbulent diffusion equation (1) 
shows that second order closure methods provide 
more informative description of atmospheric impurities 
propagation from physical standpoint in comparison 
with traditional closure methods based on the gradient 
hypothesis (2).  

When propagation times are much greater than 
characteristic time scales, the second order closure 
methods give virtually the same results as compared 
with solutions obtained with the gradient 

hypothesis (2). 

(12)

(15)
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Presence of a diffused term in turbulent flow 
equations results in the general case in nonlocal 
dependence of the flows on concentration. Such 
nonlocality is negligible under restrictions mentioned 
in the above paragraph. Mathematical expectancy 
transforms to values of turbulent flows as a result of 
spatiotemporal filtering. This is pointed out by the 
convolution integral in Eq. (15). 

The solution of the semiempirical Eq. (1) closed 
using the gradient hypothesis (2) has such 

characteristic that within an arbitrary small time 
interval after acting of an impurity source, small but 
finite impurity concentrations are to be observed at 
an arbitrary large distance of the source. This 
contradicts the fact that speed of particles cannot be 
infinite. Therefore, the obtained solution with a finite 
speed of impurity cloud boundaries is of practical 
importance. 

Hence, study of fundamental principals and use 
of second order closure methods are of principal 
importance today, especially in view of the assumption 
of nonlocal properties of turbulent exchange and 
development of approaches describing turbulent 
diffusion with finite propagation speed. 
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