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A method is proposed for calculation of the field function in the plane of the exit pupil of an 
optical system on the basis of point source images, formed by adaptive optical systems in several 
parallel planes, and the intensity distributions over Shack–Hartmann spots. 

 

Introduction 
 
One of the ways to reconstruct wave front (WF) 

distortions is the method that uses images, formed  
by an optical system (OS). Any image contains 

information on the wave front distortions introduced 
by the OS, and the task is to retrieve this 
information from an image. 

Let Ω be he exit pupil domain and  

 ( )( , )exp , ,G A k= ξ η Φ ξ η⎡ ⎤⎣ ⎦  ( , ) ,ξ η ∈ Ω  

be the OS pupil function1; À defines the amplitude 
distribution; Φ is the distribution of wave aberrations 
over the pupil; and k = 2π/λ is the wave number. In 
the focal plane oxy, the wave field, generated by a 
point source, is described, accurate to an insignificant 
factor, by the function g(x, y), determined by the 
Fourier transform: 

 ( ) ( ), ; / , / /g x y F G x R y R R= λ λ =  

  1/ ( , )exp – 2 ( )/ d d ,R G i x y R

+∞

−∞

= ξ η π ξ + η λ ξ η⎡ ⎤⎣ ⎦∫ ∫  (1) 

where R is the focal length. 
Gerchberg and Saxton2 proposed the well proven 

in practice iterative method of wave front 
reconstruction from the field amplitude À in the pupil 
and the field amplitude ⏐g(x, y)⏐ within a given area, 
ω, of the focal plane. Formally, the WF recovery 

problem can be reduced to determination of the function 

G from two restrictions imposed on it: from the preset 
amplitude in the spatial and frequency domains. 
  The measurements in the focal plane are always 
carried out, since they enable obtaining information 
about the object observed with an OS. The 

measurements of the amplitude distribution over the 
pupil are mostly needed because of the requirements 
to the method. If no such measurements have been 
carried out, then it is natural to substitute the 
requirement that the amplitude is known in the pupil 
by the requirement that the a priori information 

about this amplitude is available. Thus, the support, 
Ω, of the function G is always known. The restriction 
of this kind was proposed by Fienup.3 

The decrease in the information about the 
function G in the pupil can be compensated for by 
additional measurements of the amplitude in the 
image space. In Ref. 4, it was proposed to take into 
account the amplitude distributions over several 
planes parallel to the focal plane. If a measurement is 
carried out in a non-focal plane z ≠ 0, then, formally, 
within the framework of the diffraction image theory1 
this is equivalent to the measurement in the focal 
plane under the condition that the pupil function 
changed by the phase factor and became equal to 
GG0(z), where G0(z) = exp[–ikz(ξ2 + η2)/2R2]. This 
can be also interpreted as a measurement in the focal 
plane at various transformations of the light beam in 
the pupil region with the aid of transmission-type 

phase screen G0(zs), 1, ,s S=  where S is the number 

of defocusings introduced. 
The Shack–Hartmann sensor is widely used in 

OSs to measure local WF tilts. In an OS with such a 
sensor, the input beam is split into two beams. One 
beam forms the image of a point source in the OS 
focal plane, while the other is split by the lenslet 
array of the sensor, and each part forms the image  
of the same source in the focal plane of the 
corresponding lenslet. The number of lenslets is 
determined by the spatial spectrum of the WF 
distortions. At large dimensions of the lenslet array, 
a problem of lenslet alignment arises and the light 
flux passing through lenslets decreases. It is possible 
to increase the dimensions of the lenslet array and to 
decrease the number of lenslets, if the information 
about WF is represented not only by the single 
characteristic of the spot in the sensor lenslets, 
namely, the spot displacement, but by the intensity 
distributions over each spot instead. The method of 
WF reconstruction from the intensity distribution in 
the focal plane of OS and lenslets with the known 
support of the function G was proposed in Ref. 5. 
  The lenslets, as well as OS, perform the Fourier 
transform. The optical system performs the Fourier 
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transform of the wave function G, while the lenslets 
transform the χsG, where χs is the characteristic 
function of the aperture Ωs of the sth lenslet. 
Therefore, the wave field in the focal plane of the sth 
lenslet with the center (ξ

s, ηs) and the focal length r 
is determined, accurate to an insignificant factor, by 
the function  

 ( , ) /
s

g x y c r= ×  

–

( , ) ( , )exp 2 ( )/ d d ,
s

G i x y r

+∞

∞

′ ′ ′ ′ ′ ′ ′ ′× χ ξ η ξ η − π ξ + η λ ξ η⎡ ⎤⎣ ⎦∫ ∫  (2) 

where ξ′ = ξ – ξs; η′ = η – ηs; ñ is the coefficient, 
characterizing the fraction of the light amplitude 
directed to the sensor. 

The intensity distributions measured in light spots 

of the sensor allow us to determine the amplitude of 
the Fourier transform of the wave field in the plane 
of the exit pupil at various transformations of this field 

with the aid of transmission-type amplitude screens, 
determined by functions χs. Therefore, the method of 
wave front reconstruction proposed in Ref. 5 can be 
interpreted as a problem of determination of the 

function G from its support and the amplitude of 
Fourier transforms of its various transformations 
(constriction) by the transmission-type amplitude 
screens, χsG. 

The analysis carried out allows us to conclude 
that the methods of WF reconstruction used in Refs. 4 
and 5 are particular cases of the general approach, 
which reduces the task to determination of the pupil 
function G from its support and the amplitudes  

of Fourier transforms of its various transformations,  
in the general case, by amplitude-phase spatial 
transmission-type screens. 

 

1. Mathematical formulation  
of the problem 

 
Let us pass in equality (1), to the relative 

coordinates  

 ( , ) ( , ),aξ η = ξ η� �  ( , ) ( / )( , ),x y R a x y= λ � �  2 2/( ),z R z ka= �  

where à is the radius of the exit pupil, 2 2
1ξ + η ≤�

�  in 

Ω, and introduce the functions  

 2( , ) ( / ) ( , ),g x y a R g x y= � � �  

 0 0( , , ) ( , ) ( , , ) ( , ) ( , )
s s s

G z G G z G Gξ η ξ η = ξ η ξ η = ξ η� � �� � �

�� � � . 

Then, with the allowance made for defocusing, 
equality (1) takes the form  

 
–

( , ) ( , )exp – 2 ( ) d d ,
s s

g x y G i x y

+∞

∞

⎡ ⎤= ξ η π ξ + η ξ η⎣ ⎦∫ ∫ � � � �

� � � � �� � �  

 1,s S= . 

In equality (2), we also pass to relative 
coordinates 

 ( , ) ( , ),
s s s s

aξ η = ξ η�

�  ( , ) ( , ),b′ ′ ′ ′ξ η = ξ η�

�  2 2
1;′ ′ξ + η ≤�

�  

( , ) ( / )( , ),x y r b x y= λ � �
 b is the lenslet radius, and 

introduce the functions  

 2( , ) ( / ) ( , );
s s

g x y b r g x y= � � �  

 ( , ) ( / ) , ( / ) ;
s s s s s s

b a b a⎡ ⎤′ ′ ′ ′χ ξ + ξ η + η = χ ξ + ξ η + η⎣ ⎦
� �

� � �  

 ( , ) ( / ) , ( / ) ;
s s s s s s

G G b a b a⎡ ⎤′ ′ ′ ′ξ + ξ η + η = ξ + ξ η + η⎣ ⎦
�

� �

� �  

 ( / ) , ( / )
s s s

b a b a⎡ ⎤′ ′χ ξ + ξ η + η ×⎣ ⎦
� �

� � �  

 ( / ) , ( / ) ( , ),
s s s

G b a b a G⎡ ⎤′ ′ ′ ′× ξ + ξ η + η = ξ η⎣ ⎦
� �

� � �

� � �  

 11, .s S S S= + +  

Then equality (2) takes the form  

 
–

( , ) ( , )exp – 2 ( ) d d
s s

g x y G i x y

+∞

∞

⎡ ⎤′ ′ ′ ′ ′ ′= ξ η π ξ + η ξ η⎣ ⎦∫ ∫ � � � �

� � � � �� � � , 

 11,s S S S= + + . 

In the relative coordinates, equalities (1) and (2) 
transform into equalities (3) and (4), which have 
identical forms. Therefore, we write them as a single 
equality and, for simplicity, omit the tilde «∼»: 

 

–

( , )

( , )exp – 2 ( ) d d ( ; , ),

s

s s

g x y

G i x y F G x y

+∞

∞

=

= ξ η π ξ + η ξ η =⎡ ⎤⎣ ⎦∫ ∫
 

 11, ,s S S= +  

where 

 0( , ) ( , , ) ( , ),
s s

G G z Gξ η = ξ η ξ η  1, ,s S=   (6) 

 ( , ) ( / ) , ( / )
s s s s

G b a b aξ η = χ ξ + ξ η + η ×⎡ ⎤⎣ ⎦  

 ( / ) , ( / ) ,
s s

G b a b a× ξ + ξ η + η⎡ ⎤⎣ ⎦  (7) 

 11, .s S S S= + +  

All the Gs(ξ, η) functions have identical supports 
in the form of a circle of a unit radius, and they are 
determined through the same function G(ξ, η) by 
equalities (6) and (7). The Fourier transforms of the 
functions Gs(ξ, η) form a set, which we designate as 
V1, that is, 

 
1 11 1 2 2 1( ), ( ),..., ( )S S S Sg F G g F G g F G V

+ +
= = = ∈⎡ ⎤⎣ ⎦ . 

Thus, the right-hand sides of equalities (5) 
specify points of the set V1. 

As to the left-hand sides of equalities (5), it is 
known that they have a preset absolute value as(x, y) 
on the sets ωs of the corresponding planes of intensity 
measurements, that is 

(3)

(4)

(5)
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 ( , ) ( , ),
s s

g x y a x y=  ( , ) ,
s

x y ∈ ω  11,s S S= +  (8) 

In writing equalities (1) and (2), we mentioned 
that they are specified accurate to insignificant factors. 
Actually, these are the phase factors, which do not 
change equalities (8). The sets of the functions 

11( , ),..., ( , )S Sg g
+

ξ η ξ η⎡ ⎤⎣ ⎦  satisfying equalities (8) form 

the set V2. 
The problem of WF reconstruction from the 

intensities in the defocused OS images and in the 
sensor spots is reduced to the determination of the 
phase of such a G function, which generates a point 
from V1, belonging also to the set V2. The geometric 
formulation of the problem on WF reconstruction as 
a problem of determination of a common point of the 
given sets is known, and it can be solved by an 
iterative method in an appropriate Gilbert space, if 
the projections onto these sets have been found. 

 

2. Projections onto the sets V1 and V2 
 
Let us introduce, in the plane oxy, the space L 

of the complex-valued functions with summable 

squares and the direct product H = L
S+S1. Then the 

vector function g(x, y) 
11( , ),..., ( , )S Sg x y g x y H

+
= ∈⎡ ⎤⎣ ⎦  

if at any s its coordinates gs(x, y) ∈ L. Now specify 
the scalar product and the norm in H, 

 
1

1

( , ) ( , ) ,
S S

s s L

s

g g

+

=

ϕ = ϕ∑  1/2( , ) .g g g=  

The projection of the point g ∈ H onto the set 
V ⊂ H is the point g0 ∈ V, determined by the condition 
 

 0– inf – .
g V

g g g g
′∈

′=  

If the set V is convex and closed, then the projection 
exists and it is unique. Let us designate the projection 
as g0 = PVg. 

According to the conditions of the problem, the 
pupil function G  is limited in the absolute value 

G C≤  and has the restricted support Ω, and therefore 

the set V1 is convex, closed, and norm-limited. The 
set V2 is closed. 

Let the sets Ω0, Ω1, …, ΩS1
 form a partition Ω, 

{χs} is a set of characteristic functions of these sets 
and g′ ∈ V1. Using the Parseval’s equality for the 
Fourier transform, we find that  

 ( )
2 22 –1 –1 –1

0

1

– – –

S

s s

s

g g F g F g F g G z G
=

′ ′= = +∑  

 ( )
1

1 1

1

2 2
–1 * –1

0

1 1

– –

S S

S s s s s

s s

F g G G z F g G
+

= =

+ χ = +∑ ∑  

 ( )
1

1 1

1

2
–1

1

– const,

S

s S s

s

F g G
+

=

+ χ +∑  

where const joins the terms, independent of G; the 
asterisk «*» denotes the complex conjugate. Then, 

taking into account that the sets Ω0, Ω1, …, ΩS1
 do 

not overlap we have: 

 ( )
2

2 * –1

0 0

1

– ( ) –
S

s s

s

g g G z F g G
=

′ = χ +∑  

 ( )
1

1 1

1

2
1

1

S

s S s

s

F g G−

+

=

⎡+ χ − +⎢⎣∑  

 ( )1

2
* 1

0

1

( ) const.
S

s s s

s

G z F g G−

=

⎤+ χ − +⎥⎦∑  

Introducing additional terms, independent of G, 
it is possible to make summation under the norm sign: 
 

 

2

2 2 * –1

0 0

1

1
– ( ) –

S

s s

s

g g S G z F g G
S

=

⎛ ⎞
′ = χ +⎜ ⎟⎜ ⎟

⎝ ⎠
∑  

 
1

1

1

1

2

1 1

12

1

( 1) const.
( 1) –

S

S s sS

s

s

s

F g F g

S
S G

− −

+

=

=

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠+ + χ +⎢ ⎥+⎢ ⎥

⎢ ⎥
⎣ ⎦

∑
∑  

Introduce the functions 

 * 1

0 0

1

( )
S

s s

s

G z F g−

=

ϕ = ∑  and 
1 1

–1

0,s S sF g
+

ϕ = + ϕ  

then 

 
1

1

1

1

2

2 2 0

0

2

2

1

( 1) .
( 1) –

S

s

s

s

g g S G
S

S
S G

=

⎛ ⎞ϕ
′− = χ − +⎜ ⎟

⎝ ⎠

ϕ⎛ ⎞
+ + χ ⎜ ⎟+⎝ ⎠

∑

 

It follows from this equality that the projection 
g0 ∈ V1 is determined by the function 

 
1 1

0 0

0

1 1

( , )/ , ( , ) int ;

( , )/( 1), ( , ) , 1, .
s s

S
G

S s S

ϕ ξ η ξ η ∈ Ω⎧⎪
= ⎨

ϕ ξ η + ξ η ∈ Ω ∈⎪⎩
 

The projection onto the set V2 has been described in 
different papers, for example in Ref. 6: 

 
2 101 0( ,..., )V S SP g g g

+
= =  

 
0

0

( , ) ( , )
, ( , ) , ( , ) 0,

( , )

( , ) ( , ).

s s

s s

s

s s

a x y g x y
g x y g x y

g x y

g x y g x y

⎧
= ∈ ω ≠⎪

= ⎨
⎪ =⎩

 

The second row in the last equality corresponds to 
the rest (x, y) points. 
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3. Iterative method  

of WF reconstruction 
 

In the geometric treatment, the problem of WF 
reconstruction is reduced to the problem on 

determination of a common point for the sets V1 and 

V2. There are several algorithms of searching for this 
point, in particular, the Gerchberg–Saxton algorithm,2 
Yule algorithm,6 and the method of increasing the 
dimensionality.7 Let us apply the algorithm from 
Ref. 7. Introduce the approaching functional, defined 
on Í × Í × Í: 

 
2 2

1 2 1 1 2 2( , , ) – ,J g g g g g g g= α + α −  

 1 2 1 2, 0, 1.α α > α + α =  

The functional achieves a minimum on the set 
Í × V1 × V2 at the point (g, g1, g2), satisfying the 
condition 

 1 2 1 2,g g g VV= = ∈  1 2( , , ) 0.J g g g =  

Any converging minimizing sequence has a limit, 
determining the point from V1V2. Since the functional 
is convex, and the sets V1 and V2 are limited, any 
minimizing sequence slightly converges to the point 
of the minimum. 

The simplest algorithm of constructing the 

minimizing sequence is based on the coordinate 
descent. Let g0 be the zero approximation to the  
 

point of the minimum and g10 = PV1
g0, g20 = PV2

g0. 

The following approximations are constructed by the 
scheme: 

 
1 21 2, ;n V n n V ng P g g P g= =  

 1 1 1 2 2 , 1,2,
n n n

g g g n
+

= α + α = … . 

The condition of termination of the iterations is 
determined by the closeness of the functional to the 
minimum value. 
 

Conclusions 
 

The WF reconstruction method proposed assumes 
the generalization, which takes into account the 

intensity distribution in defocused OS images and 
defocused spots of the Shack–Hartmann sensor. 
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