
Yu.V. Kistenev and Yu.N. Ponomarev Vol. 19,  No. 4 /April  2006/ Atmos. Oceanic Opt.   249 
 

0235-6880/06/04  249-07  $02.00  © 2006 Institute of Atmospheric Optics 
 

 

 

Specific features of nonlinear interaction between 
femtosecond laser pulses and molecular atmosphere 

 

Yu.V. Kistenev and Yu.N. Ponomarev 
 

Institute of Atmospheric Optics, 
Siberian Branch of the Russian Academy of Sciences, Tomsk 

 
Received December 22, 2005 

 
Peculiarities of nonlinear interaction between high-power femtosecond laser pulses and 

molecular atmosphere are analyzed. The peculiarities are connected with combined action of 
elementary nonlinear effects such as multiphoton or tunnel ionization of molecules, Kerr 
nonlinearity, and nonlinear resonance absorption by gas components of the atmosphere. Particular 
emphasis is placed on the possible mechanisms of nonlinear effects of the lowest orders affecting the 
femtosecond laser pulse propagation along atmospheric paths. 

 

Introduction 

The advent of high-power lasers generating short 
pulses of tens femtoseconds duration has yielded a new 
technology of analyzing the atmospheric gas 
composition by laser absorption spectroscopy with a 
new broadband light source – the supercontinuum. 
The supercontinuum is generated in a chosen 
atmospheric region by terawatt femtosecond-duration 
laser pulses. As was demonstrated by P. Rairoux et al. 
(Ref. 1), the supercontinuum, like a laser beam, keeps 
well collimated along the entire propagation path. 

Propagation of terawatt femtosecond pulses 
(FSP) through molecular atmosphere differs from the 
well-studied mode of propagation of nanosecond 
pulses. Interaction of the FSP with vibrational-
rotational transitions of the atmospheric molecules is 
nonstationary. The FSP are shorter than the 
vibrational or rotational relaxation time, and the 
spectral width of the FSP delivered by a Ti:Sapphire 
laser covers several vibrational-rotational bands of 
Í2Î and Î2 molecules. In this situation, one should 
expect a complicated absorption of the FSP radiation 
by air. 

Indeed, measurements (Matvienko et al., Ref. 2) 
of the atmospheric absorption of nano- and 
femtosecond pulses having comparable widths of the 
generated spectrum (23.4 nm for 9-ns pulse and 
17.7 nm for FSP of 80 fs) show that for the pulse 
energy from 0.1 to 10 mJ dependence of the air-
absorbed energy is close to a quadratic for the FSP 
while being linear for nanosecond pulses. Later, with 
the same setup the result indicating that with a 
further increase of energy, the dependence of air 

absorption follows a power law: abs.E  ∼ las,
n

E  where 

n > 2 was obtained.3 The high FSP energy 
concentrated in a spatially limited volume results in 
the peculiarities of nonlinear interaction of laser 
pulses with molecular atmosphere connected with the 
combined action of elementary nonlinear effects such 
as multiphoton or tunnel ionization of molecules, 

Kerr nonlinearity, and nonlinear resonance absorption 
by the atmospheric gas components, etc. Appearance 
of new channels for the transfer of laser energy to the 
ambient medium makes its interaction with the 
medium much more complicated giving rise to 
nonlinear effects, which are not observed within the 
traditional nonlinear optics. 

In this paper, we review and analyze 
manifestations of the quadratic and cubic nonlinear 
effects in the interaction of femtosecond laser pulses 
with molecular atmosphere. 

Quadratic nonlinearity like other even-order 
nonlinearities is typical only of the media with no 
symmetry centers like, for example, anisotropic 
crystals (see, e.g., Ref. 4). In gas media, because of 
their isotropy, the third order is the lowest order of 
nonlinearity possible. It governs the self-action 
effects, third harmonic generation, etc. Under 
conditions of self-action in such media, the second 
order nonlinear effects are impossible in principle. In 
the isotropic media, these effects occur only under an 
additional static electric field.4 

1. Air ionization 

Oxygen molecules have the lowest ionization 
threshold among air molecules (12.1 eV), which 
several times exceeds the energy of a visible or an IR 
photon. The multiphoton ionization process is 
determined by the Keldysh parameter5: 

 

 e
2 (0)

,
mU

eE
γ = ω  

where E and ω are the laser field strength and the 
frequency; me and e are the electron mass and charge, 
respectively; U(0) is the field free ionization 
potential. If γ >> 1, then the multiphoton ionization 
of atoms prevails. At γ << 1, the Coulomb potential 
of an ion is strongly distorted by the external field, 
and the mechanism of tunnel ionization becomes 
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prevailing. In the case of especially strong optical 
fields, the Coulomb barrier is suppressed by the 
external field and the overbarrier ionization becomes 
possible.6 

In describing the ionization, we use kinetic 
models, where ionization rates are determined by the 
type of the process. The rate of multiphoton 
ionization is connected with the laser radiation 
intensity in the following way5: 

 ( ) ( , ),k k
A I r t= σ   (1) 

where A is the ionization rate; k = mod(U(ω)/�ω + 1) 

is the number of photons required for ionization (in 
ionization of oxygen molecules exposed a Ti:Sapphire 
laser radiation k = 8, Ref. 7); σ(k) is the multiphoton 
ionization cross section. Here 

 2 2 2
e( ) (0) /(4 ).U U e E mω = + ω  

A typical model of generation of free electrons in 
air under the influence of femtosecond laser pulses is 
determined by the following equation8–11: 

 

 ( )
at( , )( )k k

I r t
t

∂ρ
= σ ρ − ρ

∂
,  (2) 

where ρ is the charge concentration; ρat is the 
concentration of free electrons in the atmosphere. 

The electron knocked out from an atom 
undergoes the action of electromagnetic field of laser 
radiation, which acts as an additional barrier5 
determined by the ponderomotive energy, which 
equals Up(I) = 9.33 ⋅ 10–14Iλ, eV, where λ is the laser 
radiation wavelength, µm; I is the intensity, W/cm2. 
Note that the threshold of multiphoton ionization 
does not depend on barrier height. This is indicative 
of that the ionization is a two-stage process: first, the 
electron is excited to the barrier-defined energy of 
continuum states being still near the nucleus. Then, 
it starts absorbing more light energy and escapes 
from the atom.  

Strictly speaking, the Keldysh theory is 
applicable to hydrogen-like atoms.12 To calculate 
molecular ionization rate, one needs for an empirical 
correction. The comparison of the theory and 
experiment shows that Keldysh theory provides quite 
good agreement up to the electron density of 
∼ 1016 cm–3. 

One of the important consequences of plasma 
formation in air is the change of the air refractive 
index Δnp, which can be calculated by the Drude 
model13: 

 2 2
p e e2 /( ).n e N mΔ = − π ω   (3) 

From Eqs. (2) and (3) it follows that 

 ( ) ( )2 2
p at e2 exp d /( )

t

k k
n e I t t m

−∞

⎛ ⎞
⎜ ⎟′ ′Δ = − π ρ σ ω
⎜ ⎟
⎝ ⎠

∫ . 

For the radiation of a Ti:Sapphire laser, taking into 
account that ρat = 2.7 · 1019 cm–3 (Ref. 11) we obtain: 

  
( ) ( )7

p 5.7 10 exp d .

t

k k
n I t t

−

−∞

⎛ ⎞
⎜ ⎟′ ′Δ = ⋅ σ
⎜ ⎟
⎝ ⎠

∫  

A usual value for air is σ(k) = 3.7 · 10–96 s–1
 ⋅ cm16 W–8 

(Ref. 11); therefore, a change in the air refractive 
index caused by its multiphoton ionization by 
femtosecond pulses of a Ti:Sapphire laser is 
important only for the intensities greater than 
1013 W/cm2. 

2. Generation of the second harmonic 
in air  

Generation of the second harmonic belongs to 
the second order nonlinear effects, when nonlinear 
polarization of a medium is quadratically dependent 
on the optical field intensity: 

 (2) (2)( , ) ( , ) ( , ).j ki ijk

jk

P r t E r t E r t= χ∑   (4) 

Here (2)( , )iP r t  and ( , )jE r t  are the components of 

nonlinear polarization of a medium and optical field 
intensity, respectively. 

Generation of the second harmonic (and other 
even-order harmonics) in a centrosymmetric medium 
is possible only if high-order multipoles, namely, the 
electric quadrupole or magnetic dipole moments of a 
molecule or an atom exist. Since the electric 
quadrupole component is related to the electric 
dipole component as a characteristic of the order4 

 2 /ka a= π λ , 

where a is the size of an atom or a molecule, then for 
the optical range, the electric quadrupole polarization 
is three orders of magnitude weaker than the dipole 
polarization. 

If propagation of a laser pulse is accompanied by 
generation of inhomogeneous plasma, then the 
medium is no more centrosymmetrical, and generation 
of the second harmonic is also possible with the third 
order nonlinearity, when the effect of laser radiation 
field on the medium is combined with that of the 
electric field of the inhomogeneous plasma:  

 (3)
2 ,

s
P E EE

ω
= χ  (5) 

where 
s

E  is the field intensity of inhomogeneous 

plasma averaged over the optical period; χ(3) is the 
medium nonlinear susceptibility tensor of the third 
order, and P2ω  is the medium double-frequency 
polarization component.  

Theoretical and experimental analyses of the 
process of generation of the second harmonic of the 
type presented by Eq. (5), when plasma 
inhomogeneity is due to field inhomogeneity and due 
to ponderomotive forces, were performed by 
K. Miyazaki et al. (Ref. 14). Their experiments were 
carried out with the use of a Q-switched Nd:YAG 
laser and atomic sodium vapor. The laser delivered 
50 mJ per 28-ps long pulse; the beam was focused to 
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0.3 mm. The experiments showed that the signal of 
the second harmonic is roughly proportional to the 
fourth power of the laser radiation intensity. 

H.S. Brandi et al. (Ref. 15) have suggested the 
method of calculating the field of the second 
harmonic based on paraxial approximation and 
formalism of the Green’s functions. Their calculations 
show that the total field power of the second 
harmonic is proportional to the squared laser field 
intensity. 

Experimental observations of the signal of the 
second harmonic of the femtosecond laser pulses of a 
Ti:Sapphire laser in air for the intensities below the 
optical breakdown threshold show that the signal is 
proportional to pulse energy to the power 1.9 ± 0.1 
(Ref. 16). Here it is noted that ionization of air by 
femtosecond laser pulses starts from intensities of 
∼ 1011 W/cm2 and becomes much stronger at the 
breakdown. This value can be considered a threshold 
for this effect. 

3. Generation of the third harmonic  
in air  

For an effective generation of the third 
harmonic one has to fulfill the requirement of phase 
synchronism at the frequencies of the fundamental 
wave and the third harmonic: 

 ( ) (3 ).n nω = ω  

Beyond the regions of the resonance absorption, 
air has a normal dispersion. Hence, fulfillment of this 
requirement is impossible. However, it is easy to 
meet it if a nonlinear change of the refractive index 
at the fundamental frequency ω occurs due to the 
Kerr effect and plasma generation17:  

 0 2 p 0 p( ) ( ) ( ) ( ) (3 ) (3 ),n n I n n nω + ω ω − Δ ω = ω − Δ ω  

where n0 is the linear air refractive index; n2 is a 
nonlinear (Kerr) contribution to the refractive index. 
For a free electron concentration of ∼ 1016–1017 cm–3 
the laser radiation intensity that provides phase 
synchronism is 1013–1014 W/cm2 (Ref. 17). In this 
case, the intensity of the third harmonic is 
determined by the following relation 

 
2

3 2

3 eff2 4

3 0

(3 )
( )I z I l

n n c
ω ω

ω ω

ω

=

ε

, 

where 2

eff effl z= χ   is the effective interaction length, 

within which the phase synchronism requirement is 
fulfilled. 

In the experiments, generation of the third 
harmonic of a Ti:Sapphire laser in air started from 
I(ω) ∼2.5 · 1013 W/cm2 (Ref. 11), which can be 
regarded as a threshold for this effect. 

4. Optical rectification effect  

With generation of free electrons in air under 
the action of femtosecond laser pulses according to 

model (2), the charges with a time dependent density 
create in the ambient medium an electromagnetic 
wave, whose field strength Ee can be described by 
the wave equation  

 
2

2 e e

e 2 2 2

1 4
4 .

E j
E e

tc t c

∂ π ∂
∇ − = − π ∇ρ

∂∂
  (6) 

Here je is the current density of free charges; ñ is the 
speed of light. To determine this quantity, let us use 
the following equation10:  

 
2

e e

e

c

,

j e j
E

t m

∂
= ρ −

∂ τ
  (7) 

where τc is the time of collisional relaxation of 
plasma. For the air under normal conditions 
τc = 3.5 ⋅ 10–13 s (Ref. 9). 

Equation (6) does not allow for the secondary 
effects connected with the interaction of the field Ee 
with the medium and determined by the material 
equations of the form P = f(Ee), where P is specific 
medium polarization. 

The presence of the additional field Ee in the 
medium in combination with the laser field E can 
produce nonlinear air polarization, which, in 
particular, will have the following component: 

 
2(3) (3)

e 2 e( , ) ( , ) ( , ) ( , ) ( , )P r t E r t E r t n I r t E r t= χ = .  (8) 

If the field has a quasi-stationary character (if it 
does not change at least with the frequency close to 
that of the laser field), then nonlinear medium 
polarization (8) can result in the effect similar to 
that of optical rectification. 

Let us analyze the properties of free charge field 
Ee, appearing due to multiphoton air ionization by a 
high-power laser field. For this purpose, we will 
reduce the order of Eq. (6). Usually, to reduce the 
order of a wave equation that describes propagation 
of optical pulses, including femtosecond pulses, one 
uses the method of slowly varying amplitudes.6,18 
However, since we cannot assert it a priori that a 
free charge field has a high carrier frequency, the 
method of slowly varying amplitudes is inapplicable 
here. So, to reduce the equation order, we will use 
the approximation of a unidirectional propagation 
(Ref. 19). Equation (6) in this and in the quasi-
optical approximations will take the following form 
 

 2e e

e e

0 0

1 2
d 2 d .

2

t t

E E c
E t j c t

z c t c
⊥

∂ ∂ π
′ ′+ = ∇ − − π ∇ρ

∂ ∂ ∫ ∫   (9) 

For simplicity, assume the laser field having the 
shape of a slit-beam. Then, in a scalar approximation, 
the transverse field component Ee = (Ee)x will be 
described by the following equation  

 
2

e e

e e2

0 0

1 2
d 2 d .

2

t t

E E c
E t j c t

z c t c xx

∂ ∂ ∂ π ∂ρ
′ ′+ = − − π

∂ ∂ ∂∂ ∫ ∫   (10) 

The problem of propagation of the free charge 
field (Eqs. (2), (7), and (10)) was analyzed 
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numerically. In this case, the following circumstance 
was taken into account: 

 at/ 1,ρ ρ �  p c/ 1τ τ � . (11) 

The calculations were performed for the 
following values of the problem parameters: a 
Ti:Sapphire laser delivers a pulse of 50-fs duration, 
10 mJ energy, and 3-mm diameter; σ(k)

 =  
= 3.7 ⋅ 10–96

 s–1
 ⋅ cm16

 ⋅ W–8, ρat = 2.7 ⋅ 1019 cm–3 (Ref. 5). 
Note that the data on nonlinear response of a 
medium that can be found in literature correspond to 
the pulsed radiation with a high carrier frequency 
that lies within the range of the visible or UV 
radiation. Strictly speaking, polarization field (10) is 
not the one of this type. However, the dependence of 
n2 on the frequency is not very strong. So, in our 
estimates, we used the following value for the UV 
region: n2 = 8 ⋅ 10–19 s2

 ⋅ W–1 (Ref. 11). 
The laser pulse field as it enters the medium has 

the form  

 

0

2 2
0 p 0 p

p

( , , ) |

sin( / )exp( / )exp( ), 0 ,

0, , 0,

z
E x z t

E t x x i t t

t t

=
=

⎧ π τ − ω ≤ ≤ τ⎪
= ⎨

> τ <⎪⎩

  

  (12) 

where x0 is the initial beam radius. For simplicity, 
we used the approximation of a preset pump field 
typical of the problems of nonlinear parametric 
interaction, i.e., we assumed that the laser pulse field 
in the medium would take the form of Eq. (12). 

In Fig. 1 we illustrate the free charge field 
strength in the medium. It is seen that this field does 
not possess a high-frequency carrier, i.e., it is a 
quasi-stationary field indeed. Note that if we take 
into account a collisional relaxation the free charge 
field starts to decay with time at τc time after the 
start of the interaction between the laser pulse and 
medium. 

 

 
Fig. 1. Spatiotemporal structure of the field of free charges 
generated by a femtosecond pulse of a Ti:Sapphire laser in 
air.  

Let us now analyze the field created by the 
cubic nonlinearity of the type (8). In the 
calculations, we used the following form of the wave 
equation describing the strength distribution of this 
field Ed in the medium following the approximation 
of a unidirectional propagation. 

 
(3)

d d1 2
,

E E P

z c t c t

∂ ∂ π ∂
+ = −

∂ ∂ ∂
  (13) 

where the cubic medium polarization P(3) is 
determined by Eq. (7). Note that here, for 
simplicity, we neglect the diffraction-induced 
blurring, because the field length along the 
propagation path cτp �  

x0. 
Figure 2 shows the field strength Ed in the 

medium calculated by Eq. (13). 
 

 
Fig. 2. Spatiotemporal structure of the field of an optical 
videopulse. 

 
Figure 3 shows the lines of the equal field 

strength Ed in the relative units Ed/Em, where Em is 
the maximum intensity of the laser field after it has 
passed a distance of 0.4 cm in the medium. 

  

 

Fig. 3. The lines of the equal strength of the field of an 
optical videopulse. 

 
From Figs. 2 and 3 we can see that unlike the 

optical rectification effect in the constant electric 
field,4 in this case the structure of the videopulse 
formed is determined by the derivative of the 
spatiotemporal shape of the laser field envelope. 
Since the mechanism of this phenomenon is very 
similar to the generation of the second harmonic in 
air, then to estimate the threshold intensity of the 
optical rectification effect in air we can use the 
intensity of 1011 W/cm2.  
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Note that within the approximations accepted, 
the rate of the laser energy transfer to the videopulse 
wave is close to an exponential (Fig. 4). 

 

 
Fig. 4. Dynamics of the relative energy growth of the 
optical videopulse Wd/W at propagation of the 
femtosecond pulse of a Ti:Sapphire laser in air. Here, Wd 
stands for the optical videopulse energy, W is the laser 
pulse energy. 

5. Resonance absorption effect  

Let us analyze the resonance absorption effect 
using the quasi-optical approximation and the method 
of slowly varying amplitudes. The main nonlinear 
effects for the femtosecond pulses with the intensity 
I < 1014 W/cm2 in a gaseous medium are13: 

1) the electron Kerr effect connected with the 
nonlinear variation of the medium refractive index, 
which in the first approximation is described by the 
expression 

 2
2k | | .n n EΔ =   (14) 

Here, the nonlinear modulation of the medium 
refractive index is caused, first of all, by the 
anharmonicity of the molecular electronic response 
and Raman scattering at rotational transitions of the 
medium molecules (see Refs. 13 and 20); 

2) material dispersion of the medium, connected 
with the presence of the gaseous medium absorption 
lines within the laser emission spectrum. Dispersion 
and its accompanying absorption by medium can be 
taken into account in the approximation of rotating 
wave and slowly varying amplitudes as follows 
(Ref. 18):  

 
d

,
d

P
i P i wE

t
= Δω + ς   (15) 

 *
d

Im( ),
d

w
P E

t
= −ς   (15a) 

where P* is the complex molecular polarization; w is 
the population difference; Δω is detuning from the 

absorption line center; ς = 2d/�, d is the transition 

dipole moment.  

With the allowance made for these mechanisms, 
the propagation of pulsed radiation can be described 
by the following model: 

 

2

2

2

( , , ) 1
2 ( , , ) | |

4 ,i i i i

i

E z
i E z kn E E

z k

i kT dN P

⊥

∂ ρ η
+ Δ ρ η + =

∂

= − π ς∑

�

�

  
(16)

 

the beam in this model is assumed axially symmetric; 
the inhomogeneous broadening is neglected; T2 is the 
time of the medium phase relaxation; Ni is the 
concentration of molecules; η = t – z/c; ρ�  stands 

for the radial coordinate. 
The propagation problems similar to the model 

(13)–(16) are analyzed in Refs. 6–13. With no 
resonance absorption, Eq. (16) corresponds to the 
known model of nonlinear Schrödinger equation, 
which at n2 > 0 gives the soliton solutions, which are 
due to the balance between the diffraction-induced 
beam blurring and its nonlinear focusing-induced self-
contraction. Without any distorting factors, this 
equation can be integrated by the inverse scattering 
method.21 

Without the Kerr nonlinearity and in the case of 
single resonance transition at the exact resonance, 
Eq. (16) describes the solitons of a self-induced 
transparency (Ref. 18). With two resonance 
transitions and d1/d2 = 2, radiation propagation is 
described by the model of a double sin-Gordon, 
which cannot be integrated, but has the soliton-like 
solutions.22 

The numerical scheme of solving Eq. (16) was 
based on the method of a differential pass along the 
radial coordinate in combination with the iterative 
method of successive approximations with the 
allowance for the nonlinear component, resonance 
absorption, and anomalous dispersion.23 Simulation 
was run for the spectrum comprising equidistant 
absorption lines. 

The initial pulse shape had a radial Gaussian 
distribution. The time behavior of the field amplitude 
was described by the following function:  

 0 p p

p

sin ( / ), [0, ],
( )

0, [0, ],

q
E t t t t

E t
t t

⎧ π ∈⎪
= ⎨

∉⎪⎩
 

where tp is the pulse duration; the parameter q 
determines the steepness of the pulse fronts. In 
calculations, we took the value q = 0.25. The 
coordinate z was normalized to the linear stationary 
resonance absorption coefficient at the line center.  
 The results calculated for pulse shape at its 
propagation in the medium with no regard for the 
resonance medium component are presented in Fig. 5. 
 We can see that the pulse generally keeps its 
original shape unchanged, which corresponds to the 
conditions for existence of nonlinear Schrödinger 
equation solitons. 
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Fig. 5. Calculated pulse shape in the medium. The optical 
thickness is taken to be τ = 30. 

 

Figure 6 illustrates the influence of two 
absorption lines on the pulse shape. In this case, we 
observe a significant distortion of the pulse shape, 
which is due to the combined action of the Kerr and 
resonance nonlinearities. Note that the pulse 
amplitude is sufficient for exciting the self-induced 
transparency solitons, but the presence of two 
resonance transitions with different dipole moments 
leads to formation of the sequence of pulses with the 
invariable total area and variable amplitudes of each 
of them (Ref. 24). 

 

 

à 

 

b 

Fig. 6. Calculation of pulse shape in the medium. 
Calculation parameters: d1 = 3d2, N1 = N2, Δω1T2 = Δω2T2 = 
= 1, ςE0tp = 1, the optical thickness τ = 1 (a); τ = 30 (b). 

Calculated results on the pulse shape 
transformation in the medium whose absorption 
spectrum involves a set of ten equidistant lines of 
equal intensity spaced by a line half-width are shown 
in Fig. 7. We see that with a significant optical 
thickness, the resonance absorption can play an 
important role in transformation of laser pulse 
characteristics. 

 

 
a 

 
b 

Fig. 7. Calculation of the pulse shape in the medium. 
Calculation parameters: ςE0tp = 1, the optical thickness 
τ = 1 (à); τ = 30 (b). 
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