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Algorithm for estimation of acceptable mixing ratio variations of solid solutions is represented. 

Numerical estimates have been obtained for the cases of using LiGaSe1–xSx solid solutions in the 
second harmonic generators and optical parametric oscillators, and for the general case of three-
frequency interactions in the same crystal. The estimates obtained are presented in a graphical form. 

 

Introduction 
 
Outlook for applications of mixed nonlinear 

crystals in applied optical systems, including mobile 
systems for remote sensing of composition of the 
atmosphere1 is quite clear now. On the other hand, 
all grown mixed crystals has variations of the mixing 
ratio x of the two initial crystals along and across the 
growth direction, which can essentially decrease the 
efficiency of the frequency conversion. Variations of 
x along the cross direction are less essential, especially 
if taking into account that working elements are 
usually cut of central significantly homogeneous 
pieces. Minimum variation of the mixing ratio of 
1.5% along the growth direction was reached at the 
length of 40.7 mm in the central part of an 80-mm 
ingot of a AgGa1–xInxSe2 crystal.2 At the same time, 
variations of x up to 15% were observed along the 
entire length of an ingot of a Hg1–xCdxGa2S4 crystal 
grown by the Bridgemen–Stockbarger method with 
the deviation of x of the obtained composition from x 
in compositions of the initial substances reaching 
25%.3 However, to date no algorithm has been 
developed for calculation of the permissible variations 
of x, at which the efficiency of any frequency 
conversion would be kept at a certain prescribed level. 
In this paper we describe the technique for such 

estimates, algorithm and results obtained using it. 
 

Permissible variations  
of the mixing ratio for generators  
of second harmonics and optical 

parametric oscillators 
 
It is proposed to obtain permissible variations of 

the mixing ratio for the second harmonic generators 
(SHG) and optical parametric oscillators from the 
conditions of phase matching. In the general case, 
these conditions for three-frequency interactions are 
written  in  the  following  form4,5: 

 1 1 2 2 3 32 2 – 2 0,k n n nΔ = π λ + π λ π λ =  

 1 2 3.λ ≥ λ > λ   

For mixed crystals one should take into account the 
validity of the following formula6: 

 ni(x) = [(ni

A
)
2
x + (1 – x)ni

B
)
2
]
1/2

,  i = 1, 2, 3, 

where the superscripts A and B mean two initial 
crystals. At the presence of small variations Δx in the 
mixing ratio from the value x0 providing for meeting 
the phase-matching conditions, the phase mismatch 
appears Δk ≠ 0. Let us determine it by differentiating 
Eq. (1): 

 2 / ,i ik xΔ = π Δ Δ λ∑  (2) 

then 

 ( )( )
–1

2 .i ix kΔ = Δ π Δ λ∑  

Here ( ) ,i in x xΔ = ±∂ ∂  the sign “+” is applied for 

i = 1, 2, and “–“ is for i = 3. Taking into account that 
Δx << x and assuming that accompanying variations of 
ni are small, let us determine the permissible limits of 
variations of x. Let us consider linear approximation 

of the terms 
3
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If one accepts Δk = π/l (l is the crystal length),  
then the 59% decrease of the efficiency of conversion  
takes place due to the phase mismatch sinc2(Δkl/2) = 
= 4/π2 ≈ 41%.3,4 Then the simple algorithm is 
obtained from Eq. (3) for determining the permissible 
x variations in the considered case: 

 Δx = α[1 + ε(x – x0)]/2l. 

It is seen that they are proportional to x 
(through α) and inversely proportional to the crystal 
length. If, at different x, the phase-matching curves 
have the cross point at some wavelength, the 

permissible range of variations can reach 1.0. Let us 
note that it is not an interesting case for practical 
applications, because the mixed crystal takes the 
properties identical to the properties of the initial 
crystals at any mixing ratio. For determining the 

positive Δx+ and negative Δx– variations of x one can 
use the following equations 

 1 2 3( , , , ) /k x x l
+

Δ + Δ λ λ λ = π  

 –

1 2 3( , , , ) – / .k x x lΔ + Δ λ λ λ = π  

To determine the optimal (that, which 

corresponds to the position of the first local maximum 
in the efficiency of the frequency conversion) and 
permissible crystal lengths, enabling one to keep 
efficiency of the frequency conversion within the 
aforementioned limit in the presence of variations in 
the mixing ratio, let us consider two typical cases. 
The first one assumes the presence of smooth deviation 
of x from x0, and the second one presents the 
situation with statistically distributed local variations 
of the mixing ratio. To analyze the first case, let us 
introduce the gradient β of x along the direction of 
radiation propagation, then 

 0 ( – /2)x x z l= + β  and 0– ( – /2)x x x z lΔ = = β , 

where z is the longitudinal coordinate inside the 
crystal with z = 0 at the input surface and z = l at 
the output one. Then in approximation of a preset 
field we have for the SH ampitude6: 

2
p psh sh eff

0 0

i ( ) exp(i )d exp(i )d ,
l l

A n c d A kz z kz z⎡ ⎤= ω Δ ∝ Δ⎣ ⎦ ∫ ∫ (5) 

where Ap and Ash are the amplitudes of the 
fundamental wave and of the SH wave, deff is the 
nonlinear susceptibility coefficient of the second 
order, nsh is the refractive index for the fundamental 
(at the wavelength λp) and the second harmonics 
(λsh) waves in the direction of phase matching, ωp is 
the fundamental frequency, and c is the speed of 
light in vacuum. Both Ap and Ash are related with the 
complex amplitudes of the field and the intensities: 
 

 
p p p( , ) (1/2) exp[i( – )] c.ñ.;E r t A t= ⋅ ω +k r  

  sh sh sh( , ) (1/2) exp[i( – 2 )] c.ñ.;E r t A t= ⋅ ω +k r  

2 2
p p 0 p 0sh sh sh( , ) (1/2) , ( , ) (1/2) ,I r t n c A I r t n c A= ε = ε (6) 

where ε0 is the dielectric constant of vacuum. 
Restricting oneself to the first-order approximation of 
the expansion of the general formula for Δx and 
solving it relative to Δk, we obtain 

 2 / 4 4 ( – /2),k x K x K z lΔ ≈ πΔ α = π Δ = π β  (7) 

where K = 1/(2α). 
As the refractive indices change due to the 

variations of x, the process of frequency conversion 
differs from the conversion process in usual nonlinear 
crystals. In this case one can obtain the correct result 
from new connected equations, which take into account 
the presence of weak gradients in the refractive indices, 
namely: it is necessary to replace the formula (7) for 

the phase mismatch Δk  with 
* 2 ( – ).k K z lΔ = π β  Then 

Eq. (5) is transformed to the form: 

 *

0 0

exp(i )d exp[i2 ( – ) ]d
l l

k z z K z l z zΔ = π β =∫ ∫  

 2 2

0
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K z l l z= π β =∫  
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l

K z l K z l z× π β + π β =∫  

 ( ) ( )
2

–i /2e 1 i ,Kl
K C l K S l K

π β ⎡ ⎤= β β ± β
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 (8) 

where 

 S(τ) = 2

0

sin( 2) d ,t t

τ

π∫  C(τ) = 2

0

cos( 2) dt t

τ

π∫  

are the integral sine and cosine, 
1/2

.LKτ = β  The 

sign “+” in Eq. (8) is used when Kβ is positive, and 
“–“ if it is negative. 

Taking into account Eq. (8), let us find the 
intensity of SH wave from Eq. (6): 

 ( ) ( )2 2 2
p psh nl ;I I C l K S l K K L I⎡ ⎤ ⎡ ⎤= β + β β = η⎣ ⎦⎣ ⎦

 

 ( )
–1/2

2 2 2 2
p p 0 pnl eff sh8 ,L d I n n c⎡ ⎤= π ε λ⎣ ⎦  

where η is the efficiency of conversion, Lnl is the 
nonlinear crystal length. Let us determine the optimal 
length lm by differentiating Eq. (9) and reducing it 
to equation of the form: 

 ( ) ( )2 2( )cos 2 ( )sin 2 0.C Sτ τ π + τ τ π =  

(4)

(9)
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The value determined by numerical method is 
τ ≈ 1.21. Then the optimal crystal length is determined 

as 
m

1 ,l K= τ β  and the absolute value of the mean 

variation  of  x dxΔ  is  determined  from the formula 
 

 0– ( – /2)x x x z lΔ = = β  

as d /4,x lΔ = β  then d4 / .x lβ = Δ  Substituting ⏐β⏐ 

and the second equality of Eq. (7) into the formula 
for lm and equalizing l to lm, we obtain the formula 

for the optimal length 2
m d2 .l x= τ α Δ  This relation 

represents the balance between the crystal length and 
the variation of x, which can be used for constructing 
the prototypes of the crystals. 

The optimal crystal length decreases at significant 
variations of x, then the walk-off effect, absorption, 
and the efficiency of conversion also decrease, so the 
final formula for the optimal crystal length provides 
for quite a good accuracy of estimates. 

Only mean value of the phase-matching conditions 
or the decrease of efficiency of conversion can be 
estimated in the presence of local variations of x inside 
the crystal. If one introduces the mean absolute value 

of the deviations of x d ,xΔ  one can obtain the 

optimal crystal length la providing for the accepted 
decrease of the efficiency of conversion from Eq. (3) 

ignoring ε, in the form a d0.5 .l x= α Δ  This formula 

provides for the qualitative estimate, because it does 
not reflect the true pattern of x variations. 

Let us note that the formulas for the optimal 
and permissible crystal lengths differ only by the 
value τ2, in the second case it is approximately equal 
to 1.46. Let us also note that the accepted assumption 
about low efficiency of the frequency conversion we 
used excludes application of the proposed algorithm 
to analysis of the frequency conversion in crystals 
with large optimal or permissible lengths. However, 
in this case the characteristic crystal length Lnl, at 
which the efficiency of frequency doubling can reach 
58% can be taken as a criterion.7 Besides, applying 
the proposed method to estimation requires that the 
following conditions hold 

 lm < Lnl,  la < Lnl, 

while these inequalities assume the existence of the 

minimum variation of x, i.e., 2

d nl2x LΔ > τ α  in 

determining the optimal crystal length and 

d nl2x LΔ > α  in determining the permissible length, 

for which the estimates are only valid. 
One can perform analogous procedure for 

estimation of the efficiency of the optical parametric 
oscillation (OPO). The results of numerical estimation 
are shown in Figs. 1 and 2 for the second harmonics 
and the optical parametric oscillator assuming the 
relationship between the optical and crystallographic 
axes to be as follows XYZ → bac. 

 
         2        3         4         5         6         7     λ, μm 
Fig. 1. Permissible variations of the mixing ratio for solid 
solutions LiGaSe1–xSx (length = 1 cm) if using them as second 
harmonic generators under the phase matching conditions of 
type II in the main plane “ba” (XY): õ + Δõ+ (solid curves); 
õ + Δõ– (dotted curves); border (dashed curves). 

 

 
       2          4           6           8           10          λ1, μm 
Fig. 2. Permissible variations of the mixing ratio for solid 
solutions LiGaSe1–xSx (length = 1 cm) if using them as 
optical parametric oscillators (Nd:YAG-laser) under the 
phase matching conditions of sff-type in the main plane 
“bc” (XZ): õ + Δõ+ (solid curves); õ + Δõ– (dotted curves). 
 

 

Permissible variations of the mixing 
ratio for three-frequency interactions 

 

 
In contrast to the particular cases of SHG (two 

interacting frequencies are degenerate) and OPO 
(splitting of the pump photon into a pair of photons 
determined by the energy conservation law) for the 
general case of three-frequency interactions, the 
number of variants of interactions is infinite (any two 
frequencies can interact yielding generation of a third 
frequency determined by the energy conservation 
law). Sum frequency generation (SFG) and difference 
frequency generation (DFG) are among such 
interactions. To determine the permissible variations 
of x in this case, let us use the initial general 
formulas for determining the values of the refractive 
indices from Eqs. (7) and (8). In an anisotropic 
crystal they are set along the direction of propagation 
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u(θ, φ) by the Fresnel equation, which has two 
solutions: 

 ( )
1/2

2 1/2( , , ) 2 – – ( – 4 ) ,i i i in B B C
+ ⎡ ⎤ω θ φ = ⎣ ⎦  

 ( )
1/2

– 2 1/2( , , ) 2 – ( – 4 )i i i in B B C⎡ ⎤ω θ φ = +⎣ ⎦ , (10) 

where n+(ωi) > n–(ωi), and 

 2 2 2– ( ) – ( ) – ( ),i x i i y i i z i iB u b c u a c u a b= + + +  

 2 2 2

i x i i y i i z i iC u bc u a c u a b= + + . (11) 

Here ai = nx
–2

; bi = ny
–2

; ci = nz
–2

; ux = sinθ cosϕ, 
uy = sinθ sinϕ, and uz = cosθ are the Cartesian 
coordinates of a unit vector u(θ, φ); nx(ωi), ny(ωi), 
nz(ωi) are the main refractive indices of the refractive 
index ellipsoid. Energy conversion in SFG and DFG 
processes also means fulfillment of the energy 
conservation law: 

 ω1 + ω2 = ω3,  ω1 ≤ ω2 < ω3, 

and the law of momentum conservation: 

 1 2 3( , , ) ( , , ) ( , , ),ω θ φ + ω θ φ = ω θ φk k k  

where k is the wave vector of the normal unit vector 
u(θ, φ). The phase-matching conditions for I, II, and 
III types of interaction have the following form: 

 –

1 1 2 2 3 3( , , ) ( , , ) ( , , ),n n n
+ +ω ω θ φ + ω ω θ φ = ω ω θ φ  

 – –

1 1 2 2 3 3( , , ) ( , , ) ( , , ),n n n
+ω ω θ φ + ω ω θ φ = ω ω θ φ  

 – –

1 1 2 2 3 3( , , ) ( , , ) ( , , ).n n n
+ω ω θ φ + ω ω θ φ = ω ω θ φ  

For mixed crystals: 

 –

1 1 2 2 3 3( , , , ) ( , , , ) ( , , , ),n x n x n x
+ +ω ω θ φ + ω ω θ φ = ω ω θ φ  

 – –

1 1 2 2 3 3( , , , ) ( , , , ) ( , , , ),n x n x n x
+ω ω θ φ + ω ω θ φ = ω ω θ φ  

 – –

1 1 2 2 3 3( , , , ) ( , , , ) ( , , , ).n x n x n x
+ω ω θ φ + ω ω θ φ = ω ω θ φ  

To determine the permissible variations of 
composition Δõ+ and Δõ– for I, II, and III types of 
interaction, one can use the following formulas: 

 –

1 1 2 2 3 3( , , , ) ( , , , ) ( , , , ),n x n x n x
+ +ω ω θ φ + ω ω θ φ = ω ω θ φ  

 1 1 2 2( , , , ) ( , , , ) –n x x n x x
+ + + +ω ω θ φ + Δ + ω ω θ φ + Δ  

 –

3 3– ( , , , ) ;n x x c l
+ω ω θ φ + Δ = π  

 –

1 1 2 2 3 3( , , , ) ( , , , ) ( , , , ),n x n x n x
+ +ω ω θ φ + ω ω θ φ = ω ω θ φ  

 – –

1 1 2 2( , , , ) ( , , , ) –n x x n x x
+ +ω ω θ φ + Δ + ω ω θ φ + Δ  

 – –

3 3– ( , , , ) – ;n x x c lω ω θ φ + Δ = π  

 – –

1 1 2 2 3 3( , , , ) ( , , , ) ( , , , ),n x n x n x
+ω ω θ φ + ω ω θ φ = ω ω θ φ  

 –

1 1 2 2( , , , ) ( , , , ) –n x x n x x
+ + +ω ω θ φ + Δ + ω ω θ φ + Δ  

 –

3 3– ( , , , ) ;n x x c l
+ω ω θ φ + Δ = π  

 – –

1 1 2 2 3 3( , , , ) ( , , , ) ( , , , ),n x n x n x
+ω ω θ φ + ω ω θ φ = ω ω θ φ  

 – – –

1 1 2 2( , , , ) ( , , , ) –n x x n x x
+ω ω θ φ + Δ + ω ω θ φ + Δ  

 – –

3 3– ( , , , ) – ;n x x c lω ω θ φ + Δ = π  

 – –

1 1 2 2 3 3( , , , ) ( , , , ) ( , , , ),n x n x n x
+ω ω θ φ + ω ω θ φ = ω ω θ φ  

 –

1 1 2 2( , , , ) ( , , , ) –n x x n x x
+ + +ω ω θ φ + Δ + ω ω θ φ + Δ  

 –

3 3– ( , , , ) ;n x x c l
+ω ω θ φ + Δ = π  

 – –

1 1 2 2 3 3( , , , ) ( , , , ) ( , , , ),n x n x n x
+ω ω θ φ + ω ω θ φ = ω ω θ φ  

 – – –

1 1 2 2( , , , ) ( , , , ) –n x x n x x
+ω ω θ φ + Δ + ω ω θ φ + Δ  

 – –

3 3– ( , , , ) – .n x x c lω ω θ φ + Δ = π  

At the fixed values of the parameters ω1(λ1), 
ω2(λ2), ω3(λ3), l, and x, there are three variables θ, φ, 
and Δx±, which one needs to determine, but two 
equations (in the case of uniaxial crystal the solution 
does not depend on the angle φ (or θ) and can be 
obtained numerically). So, in practice it is necessary 
to determine the azimuth φ or polar angles θ, and the 
complicated dependence between them θ = θ(φ) in 
case of an arbitrary direction of the trajectory. Their 
choice is necessary not only for producing the 

prototypes of the crystals, but also for mutual 
reference of crystallographic and optical coordinate 
systems. The results of estimation of the permissible 
values of variations of the mixing ratio for three-
frequency interactions (SFG/DFG) are shown in 

Fig. 3. 
 

 

 
       0.5      1.0     1.5     2.0      2.5      3.0      λ3, μm 

Fig. 3. Permissible variations of the mixing ratio for solid 
solutions LiGaSe1–xSx (õ = 0,1; length = 1 cm) if using 
them as sum/difference frequency generators under the 
phase matching conditions in the main plane “ba” (XY): 
fsf- type  (solid curves);  sff-type (dotted curves);  border 
(dashed curves). 
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solid solutions LiGaSe1–xSx are acceptable in a wide 
wavelength range. 

 

Conclusions 
 

The algorithm developed has made it possible, 
for the first time, to estimate the permissible 
variations of the mixing ratio of solid solutions of 
nonlinear crystals. Its application to different types 
of conversion in the known solid solutions has shown 
that even with the centimeter size the permissible 
variations of the mixing ratio for wide wavelength 
ranges lie within reasonable limits from 1 to 10%. 
The results of estimation can be used for 
determination of technological tasks and ordering the 
working elements of solid solutions of nonlinear 
crystals. 
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