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We discuss the possibility that particles of a crystal cloud can take a preferred orientation 
with respect to wind direction under the action of aerodynamic forces in the atmosphere. It is shown 
theoretically that the preferred orientation can be caused by wind speed pulsations and by the forces 
applied to a particle falling due to gravity in the presence of wind speed gradient. The theoretical 
estimate of the parameter of the function of particle orientation distribution over azimuth angles well 
agrees with its experimental estimate from the backscattering phase matrices of cirrus clouds obtained 
from data of polarization lidar measurements. 

 

Introduction 

The effect of air turbulence on angular 
distribution of orientation of the maximum diameter 
of particles about the horizontal direction was 
considered in the first part of the paper.1 Such an 
orientation appears under the effect of aerodynamic 
forces on large non-spherical particles falling down 
due to gravity. In this paper we discuss the 
possibility that particles of a crystal cloud can take 
orientation along a preferred azimuth direction due to 
aerodynamic forces. This means that particles can 
take the position when their characteristic sizes (for 
certainty the maximum diameters) are grouped about 
some azimuth direction in the horizontal plane. 
 Probably, the first mention of the possibility of 
such an orientation came from the observations of 
inclined sun pillars, quite a rare phenomenon.2 
Nevertheless, the deviation of the sun pillar from the 
vertical direction up to 10° was observed in some 
cases. The author of Ref. 2 supposed that the 
inclination of the pillars is caused by the wind 
displacement of particles. 

We have obtained direct indications of the 
presence of azimuth orientation of particles in 
backscattering phase matrices obtained from 
polarization lidar measurements.3 Manifestations of 
the azimuth orientation were observed quite often in 
our measurements. However, in the majority of cases 
the orientation was only poorly pronounced. We 
supposed that the pulsations of wind velocity are 
responsible for the azimuth orientation. As the 
moments orienting a particle are proportional to the 
square of the difference between the velocities of the 
particle and the airflow, one can assume that the 
pulsed motions of particles can cause their 
orientation. It is a priori clear that the particles 
should not be completely entrained by the pulsed 
motions of air, and these motions should have 

different characteristics in different directions. In 
other words, orientation of particles should be 
expected from the side of pulsations belonging to the 
range of anisotropic turbulence keeping the 
orientation along wind. The purpose of this paper is 
to justify the validity of this hypothesis by means of 
quantitative estimates presented below. 

Equations of motion  

The force proportional to the difference between 
the velocities of the particle and the airflow affects 
the particle moving together with the airflow. The 
equation of motion has the following form: 

 
d
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t
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where m is the particle mass, D is the particle 
diameter, η is the viscosity of air; v and u are the 
velocities of the flow and the particle, respectively, g 
is the acceleration due to gravity. The factor κ 
depends on the particle shape. For a sphere κ = 3π. 
For oblate and elongated ellipsoids with the semi-
axis ratios 1/2.5 κ ≅ 2.5π and 2π, respectively. Here 
D means the length of the maximum diameter. 

Let us consider the equation describing the 
behavior of the x-component assuming the x-axis to 
be directed horizontally along the wind direction, 
and z-axis along vertical direction 
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The first term in parentheses of the right-hand 
part of this equation denotes the mean wind speed at 
a height z0, the second term describes the increase of 
the mean wind speed in the presence of vertical 
gradient of the wind velocity, and the third term is 
its pulsation component. Let us then assume that 
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∂vx/∂z = const. The value uz means the velocity of 
the particle falling down, which is also assumed 
constant. The factor ω0 = κDη/m for oblate and 
elongated ellipsoids is equal, respectively, to 

2 2 2 2
0 p 0 p15 / 1 , 12 / (1 ),D e D eω = η ρ − ω = η ρ −  (3) 

where ρp is the density of the particle substance, and 
e is the ellipsoid eccentricity. 

Since the differential equation (2) is linear, one 
can present its solution as a sum of solutions of the 
equations 
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Solution of Eq. (4) has the following form: 

0 0 0 0( ) [1 exp( )] [1 exp( )],u t v t Gt G t= − − τ + − τ − − τ  

  (6) 
with the initial conditions  

u(t = 0) = 0, 0 0( , 0) ,v z t v= =  

where ( ),
z x

G u v z= ∂ ∂  0 01 .τ = ω  

Solution of Eq. (6) has simple physical meaning. 
At the time t >> τ0 the speed of particle, depending 

on the sign of ,
x

v z∂ ∂  is below or above the value 

of the mean wind speed 0 ,v Gt+  by the constant 

value Gτ0 and is permanently affected by the airflow. 
Later on, we shall consider its effect on the particle 
orientation. 

Solution of the equation (5) for sinusoidal 

pulsations ( ) = sinv t A t′ ω  has the form14 
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where 0 0 01 , arctan .τ = ω ϕ = ωτ  

The first term characterizes the transition 
process, while the second one the steady harmonic 
motion. The amplitude of this motion is less than the 
amplitude of pulsations of air and is behind them in 
phase. Further, the mean square of the difference of 
the velocities of pulsations of the air and a particle at 
a steady motion will be of interest 

2 2 2 2 2 2

0( ) ( ) [sin sin( )/ 1 ] .u v u A t t′〈 Δ 〉 = 〈 − 〉 = 〈 ω − ω −ϕ +ω τ 〉
 

  
(8)  

Table 1. Calculated ratio 〈Δu2〉/A
2,  

as a function of ωτ0 

ωτ0 0.1 0.2 0.4 0.5 0.7 1.0 5.0 10 100

<Δu
2 >/A

2 0.01 0.02 0.07 0.1050.166 0.25 0.481 0.4950.499

 
As is seen in the first column of the Table 1, at 

ω ≤ 0.1/τ0 the square of the difference of the 
amplitudes of pulsations is only one percent or less of 
the square of the amplitudes of pulsations of the air. 
This reflects the fact that in the case of low-

frequency pulsations the aerosol is completely 
entrained admixture. The values of the characteristic 
time for the particles of different size are shown in 
Table 2. 

 

Table 2. The characteristic time τ0 = 1/ω0 (s), determined 
by Eq. (3), at different maximum diameters of particles D 

D, μm Particle 
shape 10 50 100 200 400 600 800 1000

plates 4⋅10–4 4⋅10–3 0.02 0.15 0.28 0.64 1.14 1.78
columns 3⋅10–4 2⋅10–3 0.01 0.07 0.14 0.32 0.57 0.89

Orientation by wind pulsations 

Let us determine the lower boundary of the 
effective frequencies of pulsations using the data 
presented. Taking τ0 = 2 s, from the condition 
ωτ0 ≥ 0.1 we obtain that ωl ≥ 0.05 rad/s. At lower 
frequencies, even the largest particles are entrained 
by the airflow. Assuming that isotropic turbulence 
can not orient particles, let us determine the upper 
boundary of the effective frequency of the Taylor 
microscale5,6 

 T /15 ,ω = ε ν   (9) 

where ε is the rate of dissipation of energy, m2 ⋅ s–3; ν 
is the kinematic viscosity of air, which we assume to 
be equal to 3 ⋅ 10–5 m2 /s for the temperatures at the 
heights of 10 km. 

The rate of dissipation varies within wide limits 
from 5 ⋅ 10–4 in the calm atmosphere to 5 ⋅ 10–1 m2

 ⋅ s–3 
in cumulus clouds.6,7 Then the Taylor frequency ωÒ 
varies within the range from 2 to 15 rad/s. 

For the elementary volume of air moving 
together with the airflow, the variance of the 
velocity is equal to (Ref. 8) 

 2
.v′〈 〉 = ε ω   (10) 

Assuming that in Eq. (8) 2 2 ,A〈 〉 = ε ω  at a 

preset τ0, i.e., the particle size is also preset, let us 
write the formula for the square of the difference of 

the pulsation velocities 2( ) ,u〈 Δ 〉  averaged over a 

significant frequency range [ωl, ωÒ], with the 
weighting function 1/ω and over the time interval 
T >> τ0 

T

l

2

2 2 2 2

0

0

( )

1
d [sin sin( )/ 1 ] d .

2

T

u

t t t
T

ω

−

ω

〈 Δ 〉 =

= εω ω − ω − ϕ + ω τ ω∫ ∫
 
(11)

  

Let us substitute the obtained value into the 
formula for the moment of force, which makes the 
particle to turn maximum diameter across to the 
direction of motion9,10 

 2( ) ( ) sin2 /2,M u Vϕ = λ〈 Δ 〉ρ ϕ  (12) 

where ϕ is the angle between the direction of the 
velocity of airflow and the minimum axis of the 
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ellipsoid of revolution, ρ is the air density, V is the 
ellipsoid volume, λ is the shape factor depending on 
the ratio between the maximum and minimum semi-
axes of the ellipsoid10 
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− −

π −
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The volumes of the spheroid and elongated 
ellipsoid of revolution can be represented by the 
length of the maximum diameters D and eccentricity 
according to the following formulas: 

 3 2

s

1
1 ,

6
V D e= π −  3 2

e
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6
V D e= π −   (14) 

Then, for determining the distribution function 
over orientation angle ϕ, let us use the same 
approach as that in Ref. 1. The main principles 
accepted there lie in the fact that the turbulence cells 
of the inner scale (dissipation interval) are 
responsible for destruction of orientation, and the 
efficiency of interactions of particles with these cells 
is proportional to the ratio of their volumes. 

The scales of the length and the velocity in the 
dissipation  interval  have  the  following  values5,8: 

 
1 1

3 4 4
0 0( ) ; ( ) .l u= ν ε = εν   (15) 

The cell of the diameter l0 has, on average, the 
energy 
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1
.

6
w l u= π ρ〈 〉   (16) 

The energy of the cell is determined from 
Eqs. (15) and (16) as a function of the mean rate of 
dissipation 
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Efficiency p of the energy transfer from a 
turbulence cell to a particle is assumed equal to the 
ratio of their volumes. For the elongated ellipsoids of 
revolution 

 
3

3 2 3 4( , ) (1 )( / ) .p D D e
−

ε = − ν ε   (18) 

Kinetic energy obtained by a particle in collision 
is equal to 

 ( , ) ( , ) ( ).W D p D wε = ε ε   (19) 

The distribution over the orientation angles is 
determined from differential equation describing the 
balance of the potential energy of particles and the 
kinetic energy of turbulent pulsations 

 ( , )d ( , )d .nM D W D nϕ ϕ = − ε   (20)  

Integration of this equation under the 
normalization conditions1 gives the following 
distribution over the angles of azimuth orientation 
about the mode ϕ0 of the distribution:  

 0 0 0( ) exp[ cos2( )]/ ( ),D D D Dn N k I kϕ − ϕ = ϕ − ϕ π  (21)  

where ND is the total number density of particles of 
the size D; I0(k) is the modified Bessel function of 
the first kind and zeroth order. The indices D 
emphasize that the distribution refers to particles of a 
certain size. The angle ϕ is counted from the wind 
direction to the direction of the minimum axis of the 
particle. If one considers maximum diameters of 
particles, the distribution (21) characterizes their 
grouping about the direction ϕ0 ± π/2. 

Taking into account formulas (12) to (19), the 
parameter k of the distribution is determined as 
follows: 

 2( , ) ( ) / .D Dk D uε = λ〈 Δ 〉ξ νε   (22)  

The additional parameter ξ is introduced in 
Eq. (22) as a characteristic of the anisotropy of 
turbulence. It depends on the ratio of the time scales 
in Lagrange integral for longitudinal and transverse 
pulsations and is introduced for taking into account 
the destructive action of pulsations along y-axis on 
the orientation of the maximum diameters across the 
x-axis. Pulsations along z-axis do not prevent this 
orientation. It is taken in our estimates that ξ = 0.5. 
The obtained estimates of the parameter k for 
particles of different size at three values of the 
energy dissipation rate are shown in Table 3. The 
rounded to integer values of angles the rms 
deviations of the particle axes directions from the 
mode of the distribution are also given here. 

It gives some idea of the degree of orientation. 
Up to 60 or 70% of particles fall to the range ±σ. The 
value σ = 52° corresponds to the uniform azimuth 
distribution of the particle axes. 

 

Table 3. The values of the parameter k of the particle 
orientation distribution (21) over the azimuth angle and 
rms deviation from the distribution mode σ for elongated 
ellipsoids of revolution of the length D and the axes ratio 

1/2.5 for different energy dissipation rates ε  

D, μm 
ε, m2 /s3

400 500 600 700 800 900 1000
k 0.015 0.036 0.10 0.11 0.17 0.24 0.36

10–3

σ° 52 51 50 50 49 48 46 
K  0.15 0.23 0.58 0.93 0.97 1.22 1.53

10–2

σ° 50 48 43 38 37 33 30 
k 0.78 1.25 1.78 2.53 3.29 4.02 4.89

10–1

σ° 40 33 27 21 18 16 14 

 
It is worth noting that the obtained estimates 

are comparable with the experimental results 
presented in Ref. 3. It is shown11,12 that the 
parameter determined from the experiment 

 22 33 11 44( )/( ),m m m mχ = + +  

where mii are the elements of the normalized 
backscattering phase matrix, is related to the 
parameter k of the distribution (21) by the 
relationship 

 2 0( ) ( )/ ( )k I k I kχ = ,   
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where I0 and I2 are the modified Bessel function of 
the first kind and of the zeroth and second order, 
respectively. This dependence is shown in Fig. 1. 
 

0 2 4 6 8 k
0 

0.2

0.4

0.6

0.8 χ(k) 

 
Fig. 1. Theoretical dependence of the parameter χ 
represented by the elements of the normalized reduced 
backscattering phase matrix12 as χ(k) = (m22 + m33)/(1 + m44) 
on the parameter k of the distribution (21). 
 

The distribution of the parameter χ obtained 
from a big sample of the backscattering phase 
matrices in presented in Ref. 3. The mode of the 
distribution is at the value of 0.1. It corresponds to 
the value k ≅ 1. It is seen in Table 3 that for quite 
large particles at ε = 10–2 the values k are of the 
same order of magnitude. 

The maximum value χ obtained in the 
experiments was equal to 0.62 that corresponds to  
k = 4.65. The value in the third row of Table 3 is not 
very far from this value. However the presented 
extreme value of χ is related to a specific atmospheric 
situation when the directions of the azimuth 
orientation of particles in two cloud layers at the 
heights of 6.0 and 6.7 km differed by almost 90°. 
Such an unusual behavior caused the supposition that 
the wind shift occurred at these heights, which could 
be accompanied by strongly developed turbulence. It 
is clear that, in addition to the horizontal 
component, the vertical component of the gradient of 
wind velocity could also be present. One can 
estimate the effect of this factor on the azimuth 
orientation based on Eq. (6). 

Orientation in the presence of the 
vertical gradient of the wind velocity 

According to Eq. (6), in the case of a steady-
state motion the difference between the mean 
velocities of wind and particle is 

 0,
x

z

v
u u

z

∂
δ = τ

∂
   

where τ0 = 1/ω0 is defined by Eq. (3), uz is the 
velocity of the particle fall due to gravity. As in 
Ref. 1, it can be presented by the particle size using 
the empirical relationship  

 3 2
10

z
u AD

β− β
= ,   

where A and β are the empirical constants introduced 
in Ref. 13. One should substitute the value (δu)2 into 
Eq. (12) instead of (Δu)2. 

The calculated results on the parameter k(D) of 
the distribution of the form (21) are shown in Fig. 2 
as functions of the particle size for three pairs of 
values of the vertical gradient of the wind velocity 
and the energy dissipation rate. It was assumed that 
the dissipation rate is greater at high values of the 
gradient. Calculations were performed for the 
columns with the aspect ratio of 1:2.5. The constants 
A and β were equal to 70 and 0.92, respectively. 
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Fig. 2. Dependence of the parameter k of distribution (21) 
on the length of the column crystals at different values of 
the vertical gradient of wind velocity ∂vx/∂z and the energy 
dissipation rate ε: (1) ∂vx/∂z = 0.1 s–1, ε = 0.1 m2 ⋅ s–3;  
(2) ∂vx/∂z = 0.05 s–1, ε = 0.01 m2 ⋅ s–3; (3) ∂vx/∂z = 0.01 s–1, 
ε = 0.001 m2 ⋅ s–3. 

 
The strong dependence on the particle size 

(∼106) is seen in Fig. 2. It is clear. The parcel 
sedimentation velocity and the squared characteristic 
time approximately linearly depend on the particle 
size. Then the squares are taken of both parameters in 
order to obtain (δu)2. Essential orientation is 
observed for the columns of the length greater than 
800 μm and only at quite great values of the vertical 
gradient of the wind velocity. Fulfillment of the 
contradictory conditions is necessary for reaching 
strong orientation, namely, the presence of great 
gradient of the wind velocity and poorly developed 
turbulence (small values of the energy dissipation 
rate). Comparison with the results presented in  
Table 3 enable us to conclude that this mechanism of 
orientation has less efficiency than that due to 
pulsations of the wind velocity. 

Conclusion 
The aforementioned estimates confirm the 

possibility that particles of crystal clouds can take a 
preferred azimuth orientation due to pulsations of 
wind velocity under conditions of a well-developed 
air turbulence. The following assumptions were used 
in making the estimates. Pulsations in the frequency 
range, the lower boundary of which is determined by 
the characteristic time of the largest particles, while 
the upper one being determined as the Taylor 
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microscale frequency, are responsible for the 
orientation. The Taylor microscale frequency depends 
on the energy dissipation rate and so it is variable. 
Turbulence in this frequency range is assumed 
anisotropic so that the time scales in the Lagrange 
integral of the longitudinal and transverse pulsations 
differ by approximately one order of magnitude. 
Turbulence is assumed isotropic for the frequencies 
above the boundary determined by the Taylor 
microscale. The cells with the size of the inner 
turbulence scale are assumed destructing the 
orientation process. The efficiency of interaction of 
particles with these cells is proportional to the ratio 
of their volumes. 

The estimates obtained under the aforementioned 
assumptions agree with estimates of the parameter of 
the function of particle orientation distribution over 
azimuth angles obtained from lidar data on the 
backscattering phase matrices of crystal clouds. 
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