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Empirical equations are proposed for estimating the variance of radiation fluctuations in 
divergent laser beams in snowfalls with allowance for the path length, scattering coefficient, detector 
diameter, and the beam divergence. 

 

Introduction 

Laser beam fluctuations in snowfalls are 
determined by the joint effect of the atmospheric 
turbulence σt

2
 and snowflakes σs

2
. This paper addresses 

the variance σ2
 caused by the joint effect of 

turbulence and precipitation. 

1. Measurement technique and results 

The detailed information about our experiments 
can be found in our earlier papers, for example, in 
Ref. 1. In this paper, we concern only the 
measurement data themselves. We used a narrow 
divergent beam (NDB) from He–Ne (λ = 0.63 µm) 
lasers of LG-38A and LGN-215 types. The initial 
radius of the beam α0, measured at the 1/å level, was 
no larger than 3 mm, and the full divergence angle θ 
amounted to 10–3 rad. We will distinguish a straight 
path (without reflections from plane mirrors) and a 
“broken” path (the path with reflections from plane 
mirrors). The measurements in a NDB were carried 
out in 80 snowfalls on straight paths with L = 37, 
130, and 964 m and on broken paths with L = 130n, 
where n = 2–7 is the number of reflections from 
plane mirrors. The detector diameter D was equal to 
0.5, 0.3, or 0.1 mm (in the most cases D = 0.1 mm). 
The total detector field of view γ was 2.7 ⋅ 10–2 rad. We 
calculated the relative variance σ2 = <(U –
 <U>)2>/<U>2, where U is the signal at the output 
of a linear amplifier, whose input is the signal from 
the photodetector; angular brackets < > denote time 
averaging. The averaging time was about 20 s. 
According to our estimates, the measurement error of 
σ2 in the variability range from 0.01 to 1.0 did not 
exceed 15%. Earlier in Refs. 2–4, three modes were 
separated in NDB radiation fluctuations with the 
increase of the optical depth τ of the propagation 
path. The variance σ2 and the level of σ first 
increase, saturate, and then decrease. From here on, 
we will call them the first, second, and third modes, 
respectively. In Refs. 2–4 it was found that, in NDB 
in the first and second fluctuation modes, σ2 increases 
with the increase of the maximum size of snowflakes 
Dm. Such a behavior of fluctuations was predicted in 

Ref. 5. For NDB it was established in Ref. 4 that the 
variance of fluctuations decreases with the increase of 
the detector diameter in the first two modes. The 
particle size distribution was not measured, but only 
the maximum particle size Dm was estimated. The 
measured values of the variance σ2 were classified in 
relation to the optical depth τ and the maximum size 
of snowflakes Dm. 

Figure 1 depicts the variance measured in NDB 
along the 964 m long path. It should be emphasized 
that these data were obtained on the straight path 
without reflections from plain mirrors. 

At the optical depth τ ≤ 4.5, the variance was 
measured using a detector with D = 0.1 mm. The 
signal-to-noise ratio S/N was no lower than 20. At 
τ ≥ 4.5, to improve the S/N, the detector diameter 
was increased to 0.5 mm. The variance was measured 
in 23 snowfalls, and 1800 values of the variance were 
obtained. Only some of them are shown in Fig. 1. In 
the first and second modes, a considerable fraction of 
measured variance values coincide with the values 
shown in Fig. 1. This coincidence is especially 
frequent in the first mode. We can clearly see from 
Fig. 1 that the variance values measured at the close 
values of the optical depth differ widely. We believe, 
as before, that these differences are caused by the 
significant difference in the snowflake size. It follows 
from Fig. 1 that the maximum value of the variance 
in coarse snowflakes is close to unity. It is not an 
instrumental effect, because in sheeted snow, when 
Dm ≈ 7 mm, the average variance4 achieved the value 
≈ 2.2 and saturated at the level ≈ 1.2 at τ = 2–3.  
The variance higher than unity was measured by  
the same variance meter on the path 964 m long in 
NDB without precipitation (under fine weather 
conditions). 

In Ref. 4, the mean values of the level σ̄ at 
τ ≤ 4.5 were determined from all measurements 
without the consideration of sheeted snow with 
D = 0.1 mm for NDB and the relationship 
connecting σ̄ and τ was proposed. Here we transform 
this relationship for the variance. Finally, we have 
 

 σ 2(τ) ≅  0.7 [1 – exp(–1.65τ)]2. (1) 
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Fig. 1. Variance σ2 as a function of the optical depth τ: Dm < 5 mm (• ); Dm ≥ 5 mm (°); L = 964 m. 

 

This equation corresponds to curve 1 in Fig. 1. It 
should be emphasized that Eq. (1) approximates the 
variance measured in NDB along 11 paths in 80 
snowfalls, including broken paths. Curve 1 (Fig. 1) 
poorly describes individual measurements. Real 
values may have twice as different values, for 
example, at τ ≈ 2. It is logical to look for the better 
approximation of experimental results. For this 
purpose, all measurements should be divided into two 
categories in accordance with the maximum size of 
snowflakes. Snowfalls with Dm < 5 mm will be 
referred to as finely dispersed and those with 
Dm ≥ 5 mm will be referred to as coarsely dispersed. 
In finely dispersed snowfalls, the three modes of 
fluctuations, which were mentioned above, are 
clearly seen.  

The physical processes determining the existence 
of the three different modes of fluctuations are 
described in Ref. 5. The increase of the variance in 
the first mode is caused by the increase in number of 
snowflakes, the saturation in the second mode is 
determined by the mutual screening among particles 
(as was noted, for the first time, in Ref. 6), and the 
decrease of the variance in the third mode is a 
consequence of the increasing role of the slightly 
fluctuating refracted radiation in the average signal.3 
Fluctuations of the detected signal are determined, in 
the first turn, by the motion of snowflakes.7 

In each mode, the dependence of the variance on 
the optical depth in finely dispersed snowfalls is 
approximated by the broken line 2 (see Fig. 1). The 
boundaries of the second mode in finely dispersed 
snowfalls can be determined from the value of 

saturation (σsat

2

 ≈ 0.45) and the error of variance 
measurements. The lower and upper boundaries of the 
second mode in finely dispersed snowfalls can be 
found from the broken line 2 at those values of the 
optical depth, at which the variance values differ by 

30% (2 × 15) from the saturated value σsat

2

, that is, 

the boundary value σb

2 is approximately equal to 0.30. 
In this case, the lower boundary of the second mode 
is achieved at τ ≈ 1.2, while the upper one at τ ≈ 5.1. 
 The equations describing the dependence 
σ2(τ) = f(τ) in each mode have the form: 

mode 1 (straight line ÀÂ) 

 σ2(τ) = 0.06 + 0.2τ at 0.2 ≤ τ ≤ 1.9, (2) 

mode 2 (straight line BC) 

 σ2(τ) ≅  0.45 at 1.9 ≤ τ ≤ 4.0, (3) 

mode 3 (straight line CD) 

 σ2(τ) = 1.0 – 0.13τ at 4.0 ≤ τ ≤ 6.5. (4) 

The maximum relative error in description of the 
experimental results by the straight line AB is no 
higher than 40, for BC it is no higher than 70, and 
for CD it is no higher than 120%. The measured 
variance values having maximum errors in the case of 
representing the dependence by the broken line are 
marked by crosses. The maximum error was 
calculated as (x2 – x1/x1) ⋅ 100%, where x1 is the 
measured variance, x2 is the variance calculated by 
Eqs. (2)–(4).  

The variance in coarsely dispersed snowfalls in 
the second (saturation) mode is approximated by the 
straight line 3 (see Fig. 1): 

 σ2 ≅  0.80 at 1.6 ≤ τ ≤ 4.8,  (5)  

which is in a close agreement with the results from 
Ref. 2. The maximum relative error, calculated as 
before, is no higher than 80% for the variance value 
marked by triangle near letter B. 

2. Variance σσσσ2 as a function of  
the beam divergence angle θθθθ 

The measurements in divergent beams with the 
increase of the divergence angle were carried out only 
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in the first mode and in finely dispersed snowfalls. 
Figure 2 shows the dependence of the variance σ2 on 
the logarithm of the divergence angle θ of a narrow 
laser beam in finely dispersed snowfalls. In these 
measurements, τ ≈ 0.1, L = 130 m, Dm = 1–3 mm, and 
θ = 10–3 – 8.3 ⋅ 10–2. The digits indicate the number of 
snowfalls, in which the measurements have been 
conducted. At all θ, in every snowfall, no less than 
ten measurements of the variance have been carried 
out. The vertical bars show the range of σ2 variations 
in all the measurements, and the dots show the 
average values. The divergence of the He–Ne laser 
beam was changed by the use of replaceable lenses 
with different focal lengths, which were set on the 
beam axis. The left point in Fig. 2 corresponds to 
NDB. The average variance increases linearly as ln θ 
increases in the range –7 ≤ ln θ ≤ –2.5, which is 
described by the following dependence: 

 σ̄2 = 0.30 + 0.04 ln θ. (6) 
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Fig. 2. Variance σ2 as a function of the beam divergence 
angle θ; L = 130 m. Digits 7 and 2 indicate the number of 
snowfalls. 

 

The increase of σ̄2 with growing θ will likely 
stop, when the laser beam will be close to a spherical 
wave. 

3. Averaging effect of the receiving 
aperture 

The effect of the detector diameter on the variance 
can be estimated with the aid of the averaging 
function8: 

G(R) = {<P2>/<P>2 – 1}{< I2>/<I>2 – 1} –1 = σP

2

/σI

2

, 

which shows, how many times σP

2

 (the relative 
variance of fluctuations of the flux P passed through 
the aperture of the radius R (D = 2R)) is smaller 

than σI

2

 (the relative variance of intensity 
fluctuations of the detected wave, that is, when 
R << Rñ, where Rñ is the spatial radius of correlation of 
intensity fluctuations). Since D = 0.1 mm, we measure 
intensity fluctuations, because the measurements are 
conducted in the first mode, when Rc is 
approximately equal to Dm/2 (Ref. 4).  

The average value of the function Ḡ decreases 
linearly with the increase of ln D. Let us emphasize 

that the function G(D/2) is obtained from the 
measurements along the broken path with 
L = 260 = (130 × 2) m in finely dispersed snowfalls.4 
The straight line in Fig. 3 corresponds to the 
equation  

 Ḡ(D/2) = 0.6 – 0.15 ln D, (7) 

when –2.3 ≤ ln D ≤ 3.2 mm. 
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Fig. 3. Averaging function of the receiving aperture: 
L = 260 m; Dm = 1–3 mm; τ ≈ 0.1–0.5. 
 

As would be expected, the measured variance σ̄2 
decreases with the increase of the detector diameter: 
 

 σ̄2 = σ0.1

2

 Ḡ(D/2). (8) 

4. Estimation of variance from  
the meteorological visual range  

The meteorological visual range Sm is usually 
used in practice to characterize the optical conditions 
in the atmosphere. We will assume below that the 
path length L is known exactly. Knowing Sm, it is 
easy to find the volume scattering coefficient α (km–1) 
for the visible radiation as α = 3.9/Sm and the 
optical depth by formula τ = αL. Having known L 
and α (or Sm), the variance for the fine snow 
(Dm < 5 mm), D = 0.1 mm and the optical depth 
τ ≤ 0.6 (first mode) can be estimated by the equation 
obtained in Ref. 9: 

 σ2 ≈ 0.3Lα ≈ 1.2L/Sm. (9) 

Equation (9) is true for NDB at L = 14–964 m and 
the conditions mentioned above. Then, according to 
Ref. 9, the maximum relative error with the use of 
Eq. (9) does not exceed 40%.  

5. Examples of variance estimation 

The variance σ2 can be estimated by Eqs. (1)–
(9). The estimate of σ2 can be useful in a laser beam 
guidance of a guided missile to a target in snowfalls.10 
It should be emphasized that of primary significance in 
snowfalls is the extinction of a laser beam, while its 
fluctuations, though being always present, are much 
lower than maximum turbulent fluctuations1 and 
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decrease considerably with the increase of the detector 
diameter. It follows from the above-said that to 
estimate σ2, it is necessary to know Dm and τ. It is 
proposed to estimate Sm rather than τ from visual 
observations in daytime and from atmospheric 
transmittance in nighttime. 

Let us present some examples of σ2 estimated for 
divergent beams in some particular cases. Let 
Sm = 1 km, L = 1 km, D = 0.1 mm, θ = 10–3 rad, 
Dm < 5 mm, that is, the snow is finely dispersed. 
Then α = 3.9 km–1 (τ = 3.9), and the second mode 
takes place, in which σ2 ≈ 0.45. At Sm = 0.5 km and 
the same L, D, θ, and Dm (τ ≈ 8), the third mode 
takes place, which at τ ≈ 8 is characterized by the 
low value of σ2 (σ2 ≤ 0.1). If Sm ≈ 3 km and L, D, θ, 
and Dm are the same, then α ≈ 1.3 km–1 (τ ≈ 1.3), that 
is, the first mode takes place. Then we can use Eq. (2), 
according to which σ2 ≈ 0.3. If Sm ≈ 7 km, then 
α ≈ 0.5 km–1

 (τ ≈ 0.5). Then from Eq. (2) σ2
 ≈ 0.16, 

and from Eq. (9) σ2
 ≈ 0.17. So the values of σ2 

estimated by Eqs. (2) and (9) are quite close. In the 
case of coarse snow (Dm ≥ 5 mm), σ2 can be estimated 
only in the second mode by Eq. (5). Emphasize that 
the effects of the divergence angle of a narrow laser 
beam and the detector diameter have been studied at 
very small values of the optical depth. 

Then estimate the effect of the beam divergence 
angle. Let τ ≈ 0.5, then from Eq. (2) we obtain 
σ2 ≈ 0.16. With the increase of the beam divergence, 
the variance increases, for example, at ln θ = –4 
(θ = 1.85 ⋅ 10–2 rad) the variance increases by 4.7 
times with respect to NDB according to Eq. (6), that 
is, σ2 ≈ 0.75. 

With the increase of the detector diameter, the 
variance increases and at ln D = 2.3 (D = 10 mm) 
according to Eq. (7) G(D/2) = 0.27. In accordance 
with Eq. (8), we obtain σ2 = 0.85 × 0.27 = 0.20. Just 
this is the estimate of the variance in finely dispersed 
snowfall at τ ≈ 0.5, θ = 1.8 ⋅ 10–2 rad, and 
D = 10 mm.  

Conclusions 

On a straight path about 1 km long with a 
small-diameter detector, we have obtained the 
empirical equations suitable for estimating the 
variance in NDB in finely dispersed snowfalls as a 
function of the optical depth in three modes, as well 
as the empirical equation for the variance in coarsely 
dispersed snowfalls as a function of Dm in the  
 
 

saturation mode. The effect of the maximum size of 
snowflakes on the variance in NDB can be weaker, if 
the initial diameter of the beam is taken greater than 
the size of the snowflakes. The increase of the 
variance with the increasing beam divergence has 
been found experimentally for the first time at the 
low values of the optical depth. It may prove untrue 
if the atmosphere is increasingly turbid due to snow, 
so this dependence should not be used automatically 
at the high atmospheric turbidity without the 
appropriate experimental data.  

The decrease of the variance with the increase in 
the detector diameter has been obtained at the low 
values of the optical depth. With the increase of the 
optical depth, the aperture effect will also take place. 
But the quantitative equation for it will be different 
from that presented in this paper, because it is 
expected from theoretical reasoning that the spatial 
correlation radius of the intensity will decrease with 
the increasing optical depth. 
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