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Scattering properties of nonspherical raindrops are analyzed in geometric optics approximation. 
Mathematical simulation is performed for numerical models of shapes of the raindrops taking into 
account their oscillation during fall. Based on the simulation results, we propose an optimized 
geometrical scheme for optical disdrometer. 

 
Interest in optical properties of raindrops is 

stimulated by the development of optical disdrometer 
for measurements of microstructure of precipitation. In 

traditional measurement schemes, one records amplitude 
of the pulse occurring due to shading of the direct 
light beam by a falling drop (Fig. 1à). 

 

 

 
à 
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Fig. 1. Optical arrangement of a disdrometer, based on 
shading of direct beam (à) and on scattering at a sharp 
angle (b). 

 
However, this method has a serious disadvantage 

because detector records total high-intensity flux 
directly from the source that produce high level of 
shot noise in the photodetector, against which it is 
very difficult to detect weak pulses due to shading. 

This is especially true when small droplets, less than 
1 mm in diameter, are recorded. 

In our opinion, a reasonable alternative to the 
method of shading of direct beam could be the method 
of measurements of optical pulses due to light 
scattering from drops into the forward hemisphere at 
sharp viewing angles (Fig. 1b). This method has no 
problems associated with the high level of shot noise 
of the photodetector, because it measures the optical 
signals from droplets at the level of dark current 
noise. Also, an advantage of this approach is that more 
than 90% of radiation is scattered by droplet into the 
forward hemisphere. A consequence is high sensitivity 
of the method and a possibility of measuring small 
particles and droplets. It is noteworthy, that 

traditional methods assume that (1) the amplitude of 
shadow-induced pulses is proportional to diameter 
Deff of the effective spherical droplet when beam 
width is much less than the particle diameter, 
h << Deff, and that (2) it is proportional to squared 

effective diameter D
2

eff when beam width exceeds  
the effective diameter, h > Deff. For nonspherical 
particles, Deff is defined as a diameter of spherical 
droplet of the same volume. In both cases, the 
particle volume is calculated according to the 
amplitude of shading pulse. 

Such methods of particle diameter determination 
can be considered absolutely valid under assumption 
that raindrops, falling into the beam, have stable 
shape uniquely related to the droplet volume, which 
is not actually true. Therefore, it is natural to 
consider the confidence of determination of a droplet 
volume and effective drop diameter, taking into 
account deformations of all types arising. 

As known, raindrops during gravitational free 
fall in the atmosphere acquire oblate shape due to 
balance of aerodynamic air resistance, force of surface 
tension, internal hydrostatic pressure, as well as 

surface electrostatic charges, with stronger 

deformation occurring for larger droplets.1 Such a 
deformation will be conventionally termed the static 
deformation of falling particles. In addition, our field 
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measurements have proven that practically all (over 
95%) of water droplets with effective diameter larger 
than 1 mm oscillate with the frequency of intrinsic 
capillary oscillations. The mean amplitude of such 
periodic oscillations ∆γ grows with increasing drop 
size nearly as quadratic law: ∆γ = ÀD2, where D is 
the droplet diameter; À is the coefficient, which 
depends on rainfall intensity and averages 0.006 mm–2 
(see Ref. 2). This form of deformation will be called 
the deformation of a falling drop.  

Taking into account the mean deformation and 
vibration, it becomes clear that drops with effective 
diameter 5 mm may have the shape factor γ = 0.6, and 
in this case the static deformation will be γ = 0.75, 
while the dynamic one due to amplitude of oscillations 
on the average will yield ∆γ = ± 0.15. It should be 
noted that in a number of recent foreign publications 

on the forward scattering by nonspherical droplets 
and determination of particle size from shading pulse, 
researchers take into account only static deformations, 
simultaneously assuming that the particle is static 
during fall.3 However, even approximate calculations 
have shown that dynamical deformations additionally 
contribute to the error of drop size determination, 
with the magnitude of this contribution growing 
proportionally to the particle diameter. 

In this regard, a natural question arises on how 
strongly do the deformations influence the accuracy 
of the optical methods of particle size measurements? 
The present paper is aimed at studying the optical 
properties of deformed raindrops to choose a 
disdrometer with an optical layout ensuring minimum 
effect of nonsphericity.  

To achieve this task, it is necessary to calculate 
forward scattering phase functions of nonspherical 
water droplets for the range of angles α = 5 … 90°. 
Scattering angles less than 5° are of no practical 
interest owing to technical difficulty of measuring 
scattered radiation, as well as to strong diffraction 
effects on optical components of the transmitter. 
Angles in excess of 90° are not considered, because 
only very small fraction of radiation incident on the 
drop is scattered backwards, giving very weak 
backscattering signal. 

For nonspherical particles, the scattering phase 
function will be a function of several variables, 
namely I(α, β, V, γ), where α and β are the viewing 
angles defining the direction of propagation of 
scattered radiation; γ is the drop shape factor; and V 
is the droplet volume. The shape of the oscillating 
drop to a good approximation can be represented as 
 

 γ = γmean + ∆γ cos (2πf ), (1) 

where γmean is the mean static deformation; ∆γ is the 
amplitude of droplet oscillation; and f is the frequency 

of intrinsic droplet oscillations. The deformation γmean 
depends on the droplet volume.  

In calculations of the scattering phase functions, 
the static and dynamic deformations were taken into 
account. The static deformations were successfully 
studied by American scientists Beard and Chuang.4 

Based on laboratory experiments and calculations, 
they developed a numerical model of the shape of 
raindrops for a discrete set of particle diameters. We 
used this model as a basis in calculations for real 
raindrops. However, experiments of Beard and Chuang 
were performed in wind tunnels for separately flying 
drops, without the presence of turbulence, coagulation, 
and collisions of droplets with different sizes, i.e., 
without effects which in the natural precipitation 
lead to oscillation of droplet shape. 

Numerous optical measurements of the falling 
drops in precipitation, performed by Sterlyadkin,5 
prove the existence of oscillations. The photographs 
of raindrops, presented by Schönhuber6

 and 

Chandrasekhar,7 also indicate that instantaneous 
droplet shape substantially diverges from statistically 
averaged model by Beard and Chuang. Therefore, our 
calculations of the scattering phase functions were 
based on data on statistically average deformation γmean 
(supplemented with information on amplitude of 
oscillations ∆γ, obtained by Sterlyadkin). Average 
deformation and amplitude of oscillations for falling 
drops are summarized in Table 1. 

 

Table 1 

D, mm 1 2 3 4 5 

γmean(D) 0.97 0.942 0.89 0.78 0.72 

∆γ(D) 0.007 0.028 0.063 0.112 0.1758
 
Thus, in the scattering phase function calculations 

we used as a final droplet model the sphere on which 
the static and dynamic deformations were 

superimposed. It was assumed that the drop has the 
static shape in accordance with Beard model, and 
experiences harmonic oscillations with amplitude ∆γ. 
An example of graphic construction of this model, 
corresponding to different phases of oscillations for 
drop 5 mm in diameter, is shown in Fig. 2à–c. 
Figure 2d–f shows photographs of drops obtained by 
Schönhuber using fast-speed imaging of raindrops. It 
is easily seen that the analytical model well 
correlates with the shape of a real droplet. 

In calculation of forward scattering phase 
functions, only first two derivative beams were taken 
into account. Their joint contribution to a given 
direction was about 99.5% of the total contribution 
of all beams. Such a high percentage is because, for 
all deformations considered, the third derivative beam, 
according to our calculations, did not fall into forward 

hemisphere; at the same time the contribution of the 
fourth derivative beam is very small, because every 
next reflection from droplet surface reduces the beam 

intensity by approximately an order of magnitude. 
All geometrical considerations are based on 

right-handed Cartesian coordinate system. Rotation 
axis of a droplet was oriented along OZ-axis. Droplet 
surface was given in parametric form by 

 G(φ,ψ,γ) = 

( ) sin( ) sin( )

( ) ( ) sin( ) cos( ) ,

( )cos( )

a

r a

c

γ ψ φ 
 ψ γ ψ φ 
 − γ ψ 

 (2) 
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Fig. 2. Shapes of the drop with the diameter D = 5 mm, calculated for different oscillation phases: equilibrium (à);  
maximum oblate (b); maximum prolate (c); real raindrops with D = 4.7 mm in equilibrium, oblate, and prolate phases of 
oscillation6 (d, e, f). 
 

where φ = 0…2π is the azimuth measured from OY-
axis clockwise; ψ = 0…π is the angle of observation 
point counted off ÎZ-axis; γ = c/a is the shape 
factor (ñ is vertical half-axis, and à is the horizontal 
half-axis of the ellipsoid of rotation); r (ψ) is the 
additional factor function (which depends on the 
angle of observation point), required to describe the 
static deformation (for ellipsoid, r (ψ) = 1). 

Expression in parentheses represents ellipsoid of 
rotation with vertical ñ and horizontal à half-axes. The 
static deformation is defined by the factor r (ψ) and, 
in accordance with the Beard model, it is expressed as 
 

 ( )
10

eff

0

( ) 1 cos ,
m

m

r r c m

=

 
 ψ = + ψ
 
 
∑  (3) 

where reff is the effective radius of equal-volume 
spherical droplet; ñm are the numerical coefficients 
chosen for each effective spherical droplet diameter 
(Ref. 4, Table 2). 

The droplet shape was calculated by substituting 
the coefficients of static deformation ñm (Table 2) and 
droplet shape factor γ into formula (2), with shape 
factor chosen in accordance with the calculated 
diameter using data from Table 1. 

The calculation of the scattering phase function 
followed the traditional geometric-optics scheme.  
At the front of the incident wave, an infinitesimally 
small area dSinc was formed, and then we calculated 
the trajectory of beams and incidence and reflection  
 

angles for each interaction of beams with droplet 
surface, and areas dS1 and dS2 on the observation 

sphere, corresponding to each beam exiting the drop; 
the radiative flux incident on each area was determined 
taking into account Fresnel coefficients. 

The scattering phase functions were calculated 
for conditions of horizontal illumination of a droplet 
by plane wave and for two observation planes; a 
vertical plane passing through the droplet center, and 
a horizontal plane passing through the plane with 
maximum horizontal cross-sectional droplet area. 
During calculation, in each plane we specified N 
points on the droplet surface, upon which horizontal 
beams from source were incident, and which 

hereinafter will be called incidence points. For each 
of N incidence points, we calculated parameters of 
normal, angles of incidence and refraction, trajectories 
of beams inside the droplet, coordinates of points of 
interaction of beam with droplet surface, and 
trajectories of the beams exiting the droplet. 

Following the terminology by Shifrin,8 beams 
exiting the droplet will be called the derivative beams. 
The beam resulting from reflection of incident beam 
from droplet surface at the point of the first interaction 

(incidence point) is called the first derivative beam. 
The second derivative beam is the one suffering 
double refraction and exiting from the droplet at the 
point of second interaction. A geometric scheme of 
beams up to the second derivative beam inclusive for 
the incidence point, lying in the vertical plane, is 
presented in Fig. 3. 

Table 2 

Shape factors cm ⋅ 10000, for different m  Diameter  
D, mm  0 1 2 3 4 5 6 7 8 9 10 

1 –28 –30 –83 –22 –3 2 1 0 0 0 0 
2 –134 –118 –385 –100 –5 17 6 –1 –3 –1 1 
3 –297 –247 –816 –188 24 52 13 –8 –8 –1 4 
4 –481 –359 –1263 –244 91 99 15 –25 –16 2 10 
5 –665 –435 –1674 –258 242 157 –7 –61 –21 11 17 
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The first-stage calculations yield a set of vectors 
Vi, i = (1…N), consisting of angles of incidence and 
refraction for points of interaction of beams with 
droplet surface, as well as viewing angles determining 
the directions of propagation for the first and second 
derivative beams: 

 Vi = (αinc1, αrefr1, αinc2, αrefr2, αobs1, βobs1, αobs2, βobs2), (4) 

where αinc1 and αrefr1 are the angles of incidence and 
refraction at the point of incidence; αinc2 and αrefr2 are 

the angles of incidence and refraction at the second 
interaction point; αobs1, βobs1, αobs2, and βobs2 are the 
viewing angles for the first and second derivative 
beams.  

At the second stage, we calculated Fresnel 
coefficients. The calculated results were presented as 
sets of the vectors Fi: 

 Fi = (Fp1 Fs1 Fp2 Fs2), i = (1…N). (5) 

The third stage involved the calculation of 
parameters of trajectories of shifted beams, resulting 
from shift of incidence point by infinitesimally small 
distance. The calculated results were presented in 
terms of vector V′i with same elements as for vector 
Vi but for shifted beams: 

 inc1 inc2refr1 refr2 obs1 obs1 obs2 obs2( , , , , , , , ),i′ ′ ′ ′ ′ ′ ′ ′ ′= α α α α α β α βV  

 i = (1…N). (6) 

Observation areas dS1 and dS2 for each ith 
incidence point were calculated taking into account  

 

that they are proportional to the product of the  
corresponding differences of viewing angles; the 
calculated results on these differences were also 
presented as separate vectors: 

 obs1, obs1, obs1,d ,i i i
′α = α − α  obs1, obs1, obs1,d ,i i i

′β = β − β  

 obs2, obs2, obs2,d ,i i i
′α = α − α  obs2, obs2, obs2,d ,i i i

′β = β − β  

with i = (1…N). 
At the final stage, we calculated the discrete 

vectors of values of scattering phase functions for 
first two derivative beams I1i, I2i, i = (1…N). For 
each i, there were the corresponding values of viewing 
angles for the first and second derivative beams. Then, 
the values of the scattering phase functions were 

linearly interpolated over viewing angles multiple of 
5°. The total scattering phase function was calculated 
by the following formula: 

 

 I(αobs) = I1(αobs) + I2(αobs). (7) 

Since radiation, incident on the droplet, 
propagates in horizontal direction, the total radiative 
flux per droplet will be the product of intensity of  
light times cross-sectional area of droplet, perpendicular  

to the wave vector of the incident radiation. In 

calculations, we took as the initial parameters the 

position vector ρ and angle t. These quantities determine 
the coordinates of the point Àpr(0, y1, z1), representing 

a projection of incidence point À(õ1, y1, z1) onto the 
plane of vertical cross section of the droplet, namely 
YOZ-plane. 

 

 
Fig. 3. Scheme of beam passage through a droplet: L0 is the beam incident on droplet; N1 is the normal at the incidence point; 
Lr1 is the first derivative (reflected) beam; Lt1 is the refracted beam at the incidence point; N2 is the normal at the point of 
second interaction of the beam to the droplet surface; Lr2 is the reflected beam at the second interaction point; Lt2 is the 
second derivative (double refracted) beam. 
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According to the chosen parameters of the point 
Àpr, we calculated the coordinates of incidence point 
on the droplet surface À by solving the system of 
equations 

 

1

1

1 1 1 0

1 1 1 1

1 1 1 2

cos( ),

sin( ),

( , , ) ,

( , , ) ,

( , , ) .

y t

z t

x G

y G

z G

= ρ
 = ρ = ϕ ψ γ
 = ϕ ψ γ

 = ϕ ψ γ

  (8) 

With õ1, y1, and z1 determined in this way,  
the equation of the beam L0, incident on the droplet,  
was written in the form of one-dimensional vector  
(–ð, y1, z1), where ð is the parameter of a straight 
line. Then, we determined the spatial equation of 
normal to the droplet surface at the incidence point 
by solving the vector equation 

 
( , , ) ( , , )

.
G G ∂ ϕ ψ γ ∂ ϕ ψ γ=  ∂ϕ ∂ψ 

N  (9) 

Equation of normal, like the equation of incident 
beam, is a parametric function in the form of one-
dimensional vector N = (àxnð, àynð, àznð), where àxn, 
àyn, and àzn are the angle-related parameters equivalent 
to direction cosines. From known equations of 
incident beam and normal, we determine the incidence 
angle at the point of the first interaction αinc. Then, 
in accordance with Snell’s law, we calculated the 
angle of refraction 

 n = sin(αinc)/sin(αrefr), (10) 

where n is the refractive index n = n2/n1; αinc is the 
angle of beam incidence; αrefr is the angle of beam 
refraction; n2 and n1 are the refractive indices of the 
media  inside  and  outside  the  droplet, respectively. 

The refractive index of water depends on 

wavelength of optical radiation and varies from 1.328 
to 1.343. In scattering phase function calculation it 
was assumed that n = 4/3.  

For calculation of incident flux, at the front of 
incident beam an elemental area dSinc was formed  
by incrementing two parameters: t = t + dt and  
ρ = ρ + dρ. At the same time, in the vertical cross 
section of droplet YOZ we obtain a shifted point 

ðrA′ . For infinitesimally small dρ and dt, the 

corresponding area dSinc = ρdt dρ. 
The radiative flux per elemental areas dS1 and 

dS2 on the observation sphere is calculated taking 
into account their sizes in accordance with the 
following formulas:  

 dS1 = Robs dα1 dβ1, dS2 = Robs dα2 dβ2, (11) 

where Robs is the radius of imaginary sphere of 
observation. 

The quantities dα and dβ are increments of 
viewing angles, which were calculated based on 
trajectories of shifted and unshifted beams exiting 
the droplet according to the formulas: 

 dα = α – α′ , dβ = β – β′. 

For each point of interaction of the beam with 
the droplet surface, we calculated the Fresnel 
coefficients. Taking into account the polarization, 
these coefficients were calculated as follows: 

 
2 2

inc increfr refr

2 2

inc increfr refr

tan ( ) sin ( )
, ,

tan ( ) sin ( )
p sR R

α − α α − α= =
α + α α + α

 (12) 

where Rs and Rð are the reflection coefficients for 
linearly polarized plane s and ð waves, ð wave is 
polarized in incidence plane; and s wave is polarized 
in the plane perpendicular to the incidence plane. 

The directions of the beams exiting the droplets 
were determined with the help of viewing angles 
(α, β). The angle α lying in the vertical plane ÕÎZ 
was measured from ÎÕ-axis and spanned the range  
–π/2 < α < π/2. In turn, the angle β lying in 
horizontal plane XOY was measured from ÎÕ-axis 
and spanned the range –π/2 < β < π/2. Full 
variability ranges of α and β form the hemisphere of 
observation whose radius was assumed to be much 
more than the radius of droplet (Robs >> reff). 

The scattering phase function was calculated by 
the following formula 

 I(α, β) = ∆Wdet/∆Ω, (13) 

where ∆Wdet is the energy flux received by detector 
in the direction of scattering; and ∆Ω is the solid 
angle on sphere of observation. 

Formula for calculation of the solid angle is as 
follows: 

 2

obs obsd / ,S R∆Ω =  (14) 

where dSobs is the area illuminated on the sphere of 
observation. 

The flux ∆Wdet was calculated by the formula 
 

 ∆Wdet = ∆Winc Ktr, (15) 

where ∆Winc is the flux incident on the receiving area 
dSinc; Ktr is the transmission coefficient which 
accounts for interaction of the beam with the droplet 
surface. The scattering phase functions and 

transmission coefficients for first and second derivative 
beams K1 and K2 were calculated by the formulas: 

 0 1

1 1 1

1 1

d d
( , ) ,

d d

I t K
I

ρ ρα β =
α β

 0 2

2 2 2

2 2

d d
( , ) ;

d d

I t K
I

ρ ρα β =
α β

 

 ( )1 1 1

1
,

2
s pK R R= +  (16) 

 ( )( ) ( )( )2 1 2 1 2

1
1 1 1 1 ,

2
s s p pK R R R R = − − + − −   

where I0 = 1, i.e., the intensity of wave incident on 
the droplet is assumed to be unity. 

The total scattering phase function is calculated 
as follows 

 1 2( , ) ( , ) ( , ).I I Iα β = α β + α β  (17) 

The scattering phase function was the function 
of a single variable. In calculation of the scattering 
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phase function for horizontal plane, the viewing 
angle α = 0, while the scattering phase function had 
the dependence I(αobs) = I(β), with 0 < β < π/2. For 
vertical plane it was assumed that β = 0, I(αobs) = 
= I(α) for 0 < α < π/2. 

For ease of comparison of scattering phase 
functions for differently shaped droplets, we introduce 
the scattering function J(α,β,γ,D), normalized by 
droplet cross section according to the rule J(α,β,γ,D) = 

= 4I(J(α,β,γ,D))/πD2, where D = 2reff is the effective 
droplet diameter. 

The calculated results are given in terms of the 
plots of forward scattering phase function for spherical 
droplet, statically deformed droplet, and a maximum 
oblate oscillating droplet. Figure 4 shows three groups 

of dependences corresponding to horizontal and 
vertical planes of observation; and the latter results 
are additionally subdivided into those for upper and 
lower half planes in view of asymmetry of the 
vertical cross section of the droplet. 

The calculated phase functions J(α,γ,D) of 
scattering into forward hemisphere of observation for 
statically deformed and maximum oblate droplets are 
summarized in Table 3. The J(α,γ,D) function is 
normalized by the cross-sectional area of a droplet of 
unit diameter. 

In Fig. 4 the solid curve shows the scattering 
phase function of a spherical droplet γsphere, dashed 
line shows the scattering phase function of a maximum 
oblate droplet γmin, and dots depict the scattering 
phase function of a statically deformed droplet γst.  
In Fig. 4b, in the region of 10° the three curves 

intersect, implying that the effect of deformations on 
the scattering properties of droplet should be 
minimum in this direction. 

The radiative flux corresponding to the direction 
of scattering αobs into the solid angle dΩ is calculated 
by the following formula 

 ∆Wdet = I0 (πD2/4) J(γ,α,D)dΩ.  

The principle underlying the optical disdrometer 
measurements of microstructure of precipitation is the 
determination of sizes of individual falling droplets 
flying through a horizontal knife-edge beam. Particle 
size determination is performed by estimating the 
scattered radiative flux along a given viewing  
 

direction. The choice of the viewing direction is very  
critical; it directly determines the measured particle 
size range and the accuracy of particle size 

determination. To ensure the highest sensitivity of 
the instrument, it is desirable to choose such a 
direction for which the intensity of scattered  
radiation is close to maximum. From the plot of the 
scattering phase function of a spherical droplet (see 
Fig. 4) we can conclude that directions close to zero, 
i.e., region of forward scattering angles, is most 
favorable. On the other hand, directions close to 90°, 
for which values of scattering phase function decrease 
by two orders of magnitude, are to be considered 
useless for measurements because of too low signal 
level. Thus the range of considered viewing angles 
was 0–50°. At the same time, it should be taken into 
account that the calculations for small viewing angles 
(0–5°) neglected diffraction effects, quite significant 
for these angles. Therefore, in selecting optical 
arrangement of a disdrometer, the angles in the 0–5° 
range were not considered. Overall, the intensity of 
scattered radiation for angles less than 50° will 
decrease by no more than a factor of 8. 

The static and dynamic deformations, 
characteristic of real raindrops, lead to a change of 
their scattering properties. The calculations of 
forward scattering phase functions showed that for 
some viewing directions these deformations have a 
significant influence, especially for large-diameter 
droplets. This distortion of the scattering phase 

function will be the source of additional error in 
determination of the drop sizes. Therefore, the second 
factor influencing the choice of viewing direction will 
be minimization of errors due to droplet deformation. 
To meet this requirement, it is necessary to find such 
scattering directions for which the intensity of 
radiation scattered by droplets is most stable for all 
considered drop sizes. 

To achieve this, it is reasonable to analyze the 
maximum deviation ∆I(α,β) of normalized scattering 
phase function of a deformed droplet I′(α,β) from 
scattering phase function of a relevant spherical 
droplet I0(α,β): 

 0

0

( , ) ( , )
( , ) 100.

( , )

I I
I

I

′α β − α β∆ α β = ⋅
α β

 (18) 

 

 
 à b c 
Fig. 4. Scattering phase functions of water droplets with the diameter of 5 mm: horizontal plane of observation (à); vertical 
plane, upper half plane of observation (b); vertical plane, lower half plane of observation (c). 
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Table 3 

Statically deformed droplet 
Oscillating droplet in maximum  

oblateness phase  

Effective droplet diameter D = 2r, mm 
  αobs, 

deg 

1 2 3 4 5 1 2 3 4 5 
0 1.173 1.158 1.147 1.104 1.116 1.166 1.141 1.119 1.117 1.064 
5 1.121 1.104 1.09 1.051 1.063 1.115 1.087 1.061 1.065 1.01 
10 1.007 0.99 0.972 0.941 0.954 1.002 0.974 0.946 0.958 0.905 
15 0.849 0.837 0.817 0.795 0.808 0.845 0.824 0.797 0.816 0.771 
20 0.678 0.671 0.653 0.639 0.652 0.675 0.661 0.641 0.663 0.627 
30 0.386 0.384 0.374 0.37 0.383 0.385 0.379 0.371 0.393 0.369 
40 0.199 0.198 0.194 0.194 0.206 0.198 0.196 0.194 0.213 0.199 
50 0.093 0.093 0.092 0.093 0.103 0.093 0.092 0.092 0.106 0.099 
60 0.041 0.042 0.041 0.043 0.049 0.041 0.04 0.039 0.046 0.048 
70 0.02 0.02 0.021 0.022 0.025 0.02 0.019 0.018 0.019 0.025 
80 0.0033 0.004 0.0043 0.0064 0.005 0.0032 0.0041 0.0046 0.0058 0.0054 
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90 0.0022 0.0021 0.0019 0.0017 0.0014 0.0022 0.002 0.0018 0.0015 0.0014 
0 1.2879 1.2998 1.3325 1.3617 1.3283 1.2835 1.287 1.326 1.4421 1.7868 
5 1.2246 1.2019 1.2227 1.2034 1.2117 1.222 1.1975 1.1981 1.2573 1.3448 
10 1.0855 1.0528 1.0948 1.0937 1.0437 1.0837 1.0569 1.079 1.0968 0.9212 
15 0.8991 0.8829 0.9467 0.9357 0.7969 0.899 0.8932 0.9318 0.862 0.7012 
20 0.7083 0.7156 0.7935 0.7546 0.6169 0.7097 0.7285 0.7687 0.6751 0.5259 
30 0.3952 0.4186 0.4834 0.4545 0.3604 0.3977 0.4299 0.4419 0.3492 0.1799 
40 0.2042 0.2077 0.2139 0.1656 0.0974 0.2058 0.2086 0.1711 0.0987 0.0357 
50 0.0955 0.0775 0.0686 0.0438 0.0103 0.0959 0.0697 0.0397 0.0116 0.014 
60 0.0422 0.0129 0.0062 0.0066 0.0071 0.0415 0.0055 0.0065 0.0076 0.0092 
70 0.0088 0.0037 0.0043 0.0048 0.0053 0.0056 0.0039 0.0045 0.0054 0.0059 
80 0.0027 0.0028 0.0033 0.0037 0.0038 0.0028 0.003 0.0034 0.004 0.0037 V

er
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n
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 u
p
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er

 h
a
lf
  

p
la

n
e 

o
f 

o
b
se

rv
a
ti
o
n

 

90 0.0022 0.0023 0.0027 0.003 0.0027 0.0023 0.0025 0.0028 0.0029 0.0026 
0 1.2879 1.2998 1.3325 1.3617 1.3283 1.2835 1.287 1.326 1.4421 1.7868 
5 1.2097 1.2359 1.2173 1.2722 1.3082 1.2066 1.2218 1.2467 1.3723 1.6608 
10 1.0536 1.0766 1.0301 1.0815 1.2134 1.0519 1.0666 1.0788 1.2287 1.6982 
15 0.8581 0.8807 0.826 0.8757 1.0074 0.8584 0.8757 0.8862 1.0072 1.2652 
20 0.664 0.6829 0.6307 0.6773 0.7869 0.6657 0.6812 0.6973 0.7939 0.9227 
30 0.3609 0.3718 0.3398 0.3637 0.4515 0.3633 0.3777 0.3866 0.4442 0.4556 
40 0.1829 0.1905 0.1706 0.1759 0.2222 0.1846 0.1939 0.1873 0.174 0.0806 
50 0.0851 0.0881 0.0691 0.0633 0.0585 0.0859 0.0866 0.0614 0.0239 0.0158 
60 0.0383 0.0386 0.0193 0.006 0.0064 0.0384 0.0309 0.0063 0.007 0.0072 
70 0.016 0.0047 0.0036 0.0035 0.0036 0.0125 0.0039 0.004 0.0039 0.0039 
80 0.0027 0.0028 0.0025 0.0023 0.0023 0.0027 0.0028 0.0027 0.0024 0.0023 
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90 0.0022 0.0022 0.0018 0.0017 0.0017 0.0022 0.0022 0.0019 0.0017 0.0016 

 

The calculated values of ∆J(α,β) for non-
spherical droplets are presented in Table 4; these are 
obtained taking into account the static and dynamic 
deformations for viewing angles in the range 5–50°. 
The calculations were performed for two planes of 
observation; and in the calculations for vertical plane 
the upper (α > 0) and lower (α < 0) half planes are 
considered separately. 

From Table 4 it follows that the influence of 
deformation on scattering phase function was the least 

in the angular range 15 < α < 35° in the vertical plane 
of observation in the upper half plane. It should be 
noted that the effect of nonsphericity for horizontal 
plane is also not very strong; however, for very oblate 
shapes (γ ∼  0.85) the scattering phase function is 

drastically distorted for scattering angles 40–60°. 
The data presented in Table 4 are obtained in 

calculations of scattering phase functions of fixed-
diameter droplets and the corresponding shape factors 

γ. The calculations showed that the deviation of 
scattering phase function of a deformed droplet from 
that of a spherical droplet is nonmonotonic. For 
instance, the static deformation leads to a decrease of 
scattering phase function for small viewing angles in 
the range 10–20°, consistent with the results obtained 
for ellipsoidal droplets. However, subsequent decrease 
of the coefficient γ causes increase of the scattering 
phase function for considered range of viewing 
angles, while the scattering phase function for 
maximum oblateness phase of droplet oscillations 
exceeds that of the spherical droplet. Therefore, it is 
impractical to use the optical arrangement of the 
disdrometric measurements of scattered radiation in 
the horizontal plane. 

The calculations of scattering phase functions in 
the horizontal plane of observation demonstrated the 
presence of pronounced maxima in certain viewing 
directions, characteristic of most oblate droplets of  
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Table 4. Summary of maximum relative errors due to deformation ∆∆∆∆J(αααα,ββββ), %, 
for horizontal and vertical planes of observation 

Viewing direction, deg 

β         D,  
mm 

 5 10 15 20 25 30 35 40 45 50 
1 3.42 3.00 0.90 1.70 3.60 4.60 5.00 4.89 4.60 3.78 
2 6.40 6.13 4.75 3.10 0.80 3.22 5.60 4.50 3.68 3.66 
3 14.10 13.50 10.20 5.60 1.80 1.10 4.20 4.80 5.20 5.80 
4 16.20 15.80 13.65 8.78 4.15 8.60 13.23 16.72 18.54 20.20 
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5 23.41 28.90 33.60 39.90 44.32 57.56 82.00 > 100 > 100 > 100 

α 
   5 10 15 20 25 30 35 40 45 50 
1 0.71 1.20 1.00 0.45 0.09 0.67 1.15 1.63 1.59 0.77 
2 4.40 4.90 2.88 1.24 5.00 6.90 5.40 1.02 14.80 37.60 
3 5.83 5.91 2.95 0.93 2.40 2.64 15.50 34.00 60.00 83.00 
4 9.47 13.20 11.52 10.64 9.24 18.30 39.00 57.40 78.00 91.00 
5 10.50 13.40 12.10 11.50 10.40 19.50 35.00 56.24 75.80 83.90 

α 
  –5 –10 –15 –20 –25 –30 –35 –40 –45 –50 
1 0.41 0.62 0.68 0.74 1.12 1.30 1.42 1.56 1.72 1.93 
2 3.90 4.20 5.32 6.50 7.20 8.90 10.53 12.50 13.80 11.80 
3 7.10 8.90 13.20 18.60 22.30 26.50 28.00 27.20 15.60 18.00 
4 17.10 21.20 22.50 24.00 29.80 35.00 38.65 25.00 20.80 29.50 

V
er
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l 
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o
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o
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s 

 

5 42.30 50.50 51.30 38.45 36.00 37.00 38.00 40.00 71.20 80.30 
 

 
large diameters. The scattered intensity in directions 
of maxima may be more than a factor of two larger 
than the intensity of radiation scattered by the 
spherical droplet. The presence of this effect in the 
range of viewing angles considered here may seriously 
complicate the use of the method of radiation 
measurements in the horizontal plane. 

Based on the calculations (Fig. 5), we suggested 

an optical arrangement of the disdrometric measurements 

of microstructure of precipitation, which, in our 
opinion, most successively minimizes the contribution 
from the particle deformations. 
 

 
Fig. 5. Schematic illustration of the relative positions of 
source and optical detector in disdrometer measurements of 
microstructure of precipitation. 

In the suggested scheme, raindrop of any diameter 
is expected to be measured with the accuracy within 
3.4%. 

 

References 

 

1. K.V. Beard and C. Chuang, J. Atmos. Sci. 47, No. 11, 
1374–1389 (1990). 
2. V.V. Sterlydkin, Atmos. Oceanic Opt. 13, No. 5, 497–
501 (2000). 
3. B. Molle, in: Int. Commission On Irrigation and 
Drainage. Q. 50, R.3.02. Eighteen Congress, Montreal 
(2002).  
4. K.V. Beard and C. Chuang, J. Atmos. Sci. 44, No. 11, 
1509–1524 (1987). 
5. V.V. Sterlyadkin, Opt. Spektrosk. 69, Issue 6, 1357–
1392 (1990).  
6. M. Schönhuber, “About Interaction of Precipitation 
and Electromagnetic Waves,” Doctoral Thesis, Technical 
University Graz, Austria (1998), 181 pp. 
7. V. Chandrasekhar, A.C. William, and V.N. Bringi, J. 
Atmos. Sci. 45, No. 8, 1323–1333 (1988). 
8. K.S. Shifrin, Light Scattering in Turbid Media 
(Gostekhteorizdat, Leningrad, 1951), 288 pp. 

 

Source  
of radiation 

Photodetector

Knife-edge beam 


