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A technique and algorithm of mesometeorological field spatial extrapolation based on the 
mixed four-dimensional dynamic-stochastic model and the Kalman filtering apparatus are considered. 
The statistical estimates of the quality of the proposed algorithm as applied to spatial extrapolation 
of the mesoscale wind and temperature fields to a territory uncovered by observations are discussed. 

 
Introduction 

Basic problems of current mesometeorology 
include estimation and forecasting of the atmospheric 
state over the territory uncovered by observations 
from the measurements obtained in adjacent regions. 
For a long time these problems were solved  
within the framework of objective analysis of 
meteorological fields based on the method of optimal 
interpolation.1,2 

In recent years, in connection with the 
increasing amount and types of meteorological 
information, the traditional procedure of objective 
analysis is often displaced by the procedure of four-
dimensional assimilation of data. The latter is a 
combination of two traditionally different tasks: 
objective analysis and forecast of meteorological 
fields. The prognostic model usually incorporates a 
set of hydrothermodynamic equations (hydrodynamic 
model). A disadvantage of this approach is that the 
prognostic model of hydrodynamic type is used only 
as a time extrapolant, and the forecasting procedure 
does not provide for refinement of the model 
parameters at the next time step. 

Another approach to solution of the problem of 
spatial extrapolation of meteorological fields in the 
mesoscale region is proposed in this paper, which is 
based on the use of the Kalman filtering algorithm 
and the mixed four-dimensional dynamic-stochastic 
model. The model describes the meteorological field 
variation simultaneously in time and space without 
invoking voluminous operational information about 
the atmosphere state. At the same time, application 
of the Kalman filter allows a real time estimation 
and step-by-step correction of the prognostic model 
parameters as the measurements income from a local 
network of aerological stations.  

This paper continues our earlier works, 

3,4 in 
which the linear few-parameter dynamic-stochastic 

model based on the first-order differential equations 
was laid in the foundation of the approach.  

The dynamic-stochastic approach is used to 
decrease the size of covariance matrices of estimation 
and forecasting errors due to simplification of the 
prognostic model of a meteorological field behavior 
in space and time, that is, at decreasing the state 
vector dimension. The same issues are also considered 
in Refs. 5–7. For the prognostic hydrodynamic 
model, it is proposed to pre-calculate covariance 
matrices with the use of approximating functions. In 
this case, the results of calculation of the 
corresponding matrices depend only on the initial 
data. From the mathematical point of view, such a 
solution is not adequate to the classical optimal 
Kalman filtering. 

1. Formulation and method  
of solution of the problem 

The problem of spatial extrapolation of a 
centered meteorological field ξ′  in the mesoscale 
range consists in estimating its value at the point 
with rectangular coordinates (x0, y0, z0) from 
measurements at the points with coordinates 
(xi, yi, zi) (i = 1, 2, 3, …, n) and constructing some 
mathematical model describing the field variation in 
space and time. As was already mentioned, for this 
purpose we use a mixed four-dimensional dynamic-
stochastic model of the form  

 

, ,

1

,
,

1 1

( ) ( )

( )
( ) ,

K

ji h i h

j

M S
s s h

m i m
ism s

k a k j

c k
b k

=

= =

′ ′ξ = ξ − +

′ξ
′+ ξ +

ρ

∑

∑ ∑

 

(1)

 



V.S. Komarov et al. Vol. 17,  No. 8 /August  2004/ Atmos. Oceanic Opt.  585 
 

where k = 0, 1, 2, … is the discrete time with the 
discretization interval ∆t, (tk = k∆t); K is the order 
of time lag, which determines the depth of 
autoregression; Ì is the number of altitude levels 
taking part in formation of the estimate of the field 
ξ′; S is the number of observation sites; aj, bm, and cs 

are the unknown parameters to be estimated, which 
determine the time, height, and space dependence 
between the field measurements at different instants  
of the discrete time k at different levels and at 
different points of a mesoscale region, respectively; ρis = 
= ρ0/(ρ0 – Ris) is the normalizing coefficient, which 
determines the mutual arrangement of observation 
points on the plane within the mesoscale region and 
reflects the presence of spatial correlation between 
them (here ρ0 is the spatial correlation length and 

= − + −2 2( ) ( )s sis i iR x x y y  is the distance between 
the points i and s, in km).  

According to Refs. 1 and 8, in the planetary 
boundary layer (at h < 1.5 km), the spatial 
correlation length ρ0 is 2000 km (for temperature) 
and 750 km (for orthogonal components of wind 
velocity), while for the free atmosphere it is, 
respectively, 2500 and 1000 km. 

It follows from Eq. (1) that the ξ′ value at any 
point of the region at the chosen height level 
parametrically depends on the field values in the 
previous instants to the depth K (connected with the 
temporal correlation length), on its values at all 
height levels up to the level M at the instant k (time 
of observation), and on all measured values of the 
filed at the chosen level h at other observation 
points.  

Since Eq. (1) uses the centered field ξ′ as the 
initial one, let us dwell on the procedure of centering 
before going on to consideration of the technique of 
its estimation at some spatial point with the 
coordinates (x0, y0). For this purpose, we represent ξ 
as a sum of regular ξ  and fluctuating ξ′ components, 

that is, ξ = ξ + ξ′ . 

To estimate the regular component of ξ  at the 
ith points of the given mesoscale region, i.e., at the 
measurement points, and at the hth level, we use the 
region-averaged value of this field determined from 
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where ξ( )h
i  is the measured value of the 

meteorological field at the ith station and the hth 
height level. 

At the same time, to estimate the regular 
component of ξ  at the point of extrapolation (x0, y0) 
at the given height level h, we use the weighted 
mean value calculated from the measurements at 
three the closest (to the point of extrapolation) 
stations by the equation 
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i  is the measured value of ξ at the ith point 
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=

= − ∑
3

0 0

1

1 ( )i i j

j

q R R  is the weighting coefficient 

(here Ri0 is the distance from the ith station to the 
point of extrapolation (x0, y0), x and y are the 
rectangular coordinates of the station). 

To find the values of the centered field ′ξi  at 
the measurement points at every step of estimation of 
ξi (hereinafter the superscript h is omitted for 
simplicity), we can use the following equation:  

 ′ξ = ξ − ξï,i i  (4) 

while to estimate ξ at the point of extrapolation 
(x0, y0) with the chosen algorithm, we can use the 
equation  

 ′ξ = ξ + ξ0 0 0. (5) 

Consider now the technique of spatial 
extrapolation based on the use of the Kalman filter 
and the model (1). 

In the case of application of the four-
dimensional difference dynamic-stochastic model, the 
problem of ξ′ estimation at some point with the 
coordinates (x0, y0) breaks into two stages. At the 
first stage, the values of ξ′ obtained at the 
measurement points are used to estimate the model 
coefficients aj, bm, and ñs, which are constant in the 
meaning of average because the field is assumed 
homogeneous and isotropic for the given mesoscale 
region. At the second stage, the determined 
coefficients are used in the mathematical model (1) 
to reconstruct the values of the centered field at the 
given spatial point and at different height levels. 

According to Ref. 9, to estimate the unknown 
parameters of the model (1), i.e., aj, bm, and ñs, it is 
necessary to set a system of difference equations in 
the matrix form:  

 X(k + 1) = F(k) ⋅ X(k) + ΩΩΩΩ ΩΩΩΩ(k), (6) 

where X(k + 1) = |a1(k + 1), a2(k + 1), …, aK(k + 1); 
b1(k + 1), b2(k + 1), …, bM(k + 1); c1(k + 1), c2(k + 1), …, 
cS(k + 1)|T = |X1(k + 1), X2(k + 1), …, XK(k + 1), …, 
XK+M(k + 1), …, XK+M+S(k + 1)|T is a column 
(n × 1) = ((K + M + S) × 1) vector, including the 
unknown variables of the dynamic system state (state 
vector); Ò denotes transposition; F(k) is the (n × n) 
transition matrix for the discrete system; ΩΩΩΩ ΩΩΩΩ(k) = 
= |ω1, ω2, ..., ωn|T is a column vector of random 
perturbations of the system (vector of state noise). 

If we assume that the considered meteorological 
field is isotropic and stationary, and at the given time 
interval the unknown parameters X(k) to be estimated 
are, on the average, unchanged, then 
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 X(k + 1) = X(k),  (7) 

or 

 X(k + 1) = F(k) X(k).  (8) 

Thus, in our case the transition matrix F(k) 
corresponds to the (n × n) unit matrix I: 

 F(k) = I= 

�

�

�

� � � � �

�

1 0 0 0
0 1 0 0
0 0 0 0

0 0 0 1

.  (9) 

The mathematical model of measurements, 
which are used in the Kalman filtering algorithm to 
estimate the system state, is generally described by 
the additive mixture of the useful message and the 
measurement error: 

 ′ ′= ξ = ⋅ +( ) ( ) ( ) ( ) ( )k k k k kY H X E , (10) 

where Y′(k) is the (s × 1) vector of actual 
measurements; H(k) is the (s × n) matrix of 
observations, determining the functional relation 
between the true values of the state variables and the 
actual measurement; Å(k) is the vector of 
measurement errors (measurement noise). 

The vector of actual measurements Y′(k) at the 
time k includes the whole set of the measured values 
of the meteorological field of interest at S stations 
and at all height levels. This vector can be written in 
the form  

 Y′(k) = |Y′
11(k), Y′

12(k), Y′
13(k), …, Y′

1,M(k), 

 Y′
2 1(k), Y′

2 2(k),…,Y′
2 ,M(k),…Y′S,M(k)|Ò, (11) 

where the first element in the subscripts is the 
number of the observation point (station), while the 
second one is the number of the height level included 
in the consideration. Thus, the vector of 
measurements includes a sequential series of vertical 

profiles measured from all  observation points 
involved in consideration, and s = S × M. 

Specify the matrix of observations H(k). When 
comparing the equations for the basis function (1) 
and the mathematical model (10), we can see that the 
elements of H(k) are the measurements of ξ′ at the 
observation points at all heights at this and previous 
instants (to the depth K). The matrix H(k) has a 
three-block structure. The first (n × K) block 
includes the values of the meteorological parameter 
at the previous (to the depth K) instants. As the 
discrete time k changes and new data come from the 
measurement stations, the elements of H(k) move 
step-by-step inside the first block from the left to the 
right, thus forming the moving window of the 
autoregression process with the effective width K. 

The second n × (M + 1) part of H(k) is formed 
by the blocks of angular matrices, whose upper parts 
consists of zeros, while the lower ones include the 
field values measured at neighboring levels. The third 
(n × S) part of H(k) is filled with the field values 
measured at all observation points at the current 
instant k. 

Once all the elements entering into Eqs. (6) and 
(10) are determined, the estimation problem is solved 
with the aid of the linear Kalman filter, which 
provides for estimation of the state vector elements 
with minimal rms errors. 

The estimation equations have the following 
form 

9: 
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where  

 ˆ ˆ ˆ ˆ| , |+ = + + +1 2( 1) ( 1) ( 1), ..., ( 1)nk X k X k X kX T  

is the estimate of the state vector at the instant 

(k + 1), ˆ |+( 1 )k kX is the vector of estimates predicted 
for the instant (k + 1) from the data at the step k; 
G(k + 1) is the (n × s) matrix of weighting 
coefficients. 

Note that ˆ +( 1)kX  and ˆ |+( 1 )k kX  are (n × 1) 
vectors, and the matrix equation for calculation of 
the vector of forecast is  

 ˆ ˆ|+ = ⋅( 1 ) ( ) ( ).k k k kX F X  (13) 

The weighting coefficients in the Kalman filter 
are calculated using the standard equations for 
calculation of covariance of estimation errors. 

9 
To start the filtering algorithm (12) under the 

conditions of lacking a priori information, the initial 
values of the coefficients should be taken zero: ai = 0, 

bi = 0, ci = 0. Thus, ˆ (0)X = 0. Other initial 
conditions connected with estimation of elements of 
the state noise and observation matrices are set based 
on the known values of standard deviations and 
errors of radiosonde data. 

Thus, in the course of processing of 
measurements at the instants k, the estimate of the 
state vector is forming  

 ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ= 1 2 1 2 1 2( ) , ,…, , , ,…, , , ,…, , ,K M Sk a a a b b b c c cX   (14) 

with the use of Eqs. (12) and the given initial 
conditions. This estimate is used for direct 
reconstruction of the meteorological field ξ at the 
point of extrapolation based on the equation 

 ˆ ˆ ˆˆ ′= + = + ×Ξ Ξ Ξ0 0( ) ( ) ( ) ( ) ( ),k k k k kY H X   (15) 
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where Ξ  and Ξ̂0 ( )k  are the vectors of weighted-
mean and reconstructed values of meteorological 

parameters at the point (x0, y0); ˆ ( )kX  is the 
obtained estimate of the state vector at the instant k; 
ˆ ′0 ( )kY  is the vector of estimates of the field 

fluctuation component at the point of extrapolation; 
ˆ ( )kH  is the (M × n) transition matrix for 

reconstruction of the same field at the point (x0, y0). 
 

2. Results of studies of the Kalman 
filtering algorithm  

The above algorithm was subjected to the 
quality assessment as applied to the problem of 
spatial extrapolation of mesoscale temperature and 
wind fields. 

Since the spatial extrapolation is considered here 
as applied to prediction of an industrial pollution 
cloud propagation, we took the layer-average values 
in some height range hk – h0 (instead of wind and 
temperature measurements at individual levels), 
where h0 = 0 corresponds to the ground level, and hk 
is the height of the top boundary of the studied kth 
atmospheric layer. The layer-average (or simply 
average) values of temperature and zonal and 
meridional wind components were calculated as  
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where <⋅> denotes averaging of observations in some 
atmospheric layer, and ξ is the measured value of the 
meteorological parameter at different atmospheric 
levels. 

To assess the quality of the Kalman filtering 
algorithm, we used the archive of data of two-year 
(2000–2001) two-time (0 and 12 GMT) radiosonde 
observations at eight aerological stations: Moscow 
(55°45′ N, 37°57′ E), Smolensk (54°45′ N, 32°04′ E), 
Bologoe (57°54′ N, 34°03′ E), Vologda (59°19′ N, 
39°55′ E), Nizhnii Novgorod (56°16′ N, 44°00′ E), 
Ryazan (54°38′ N, 39°42′ E), Sukhinichi (54°06′ N, 
35°21′ E), and Kursk (51°46′ N, 36°10′ E), forming a 
typical mesoscale region (Fig. 1). All the observations 
of temperature and wind presented for winter and 
summer on standard isobaric surfaces and singular-
point levels were reduced, using linear interpolation, 
to the uniform system of the following geometric 
heights: 0 (ground level), 0.2, 0.4, 0.8, 1.2, 1.6, 2.0, 
3.0, 4.0, 5.0, 6.0, and 8.0 km. This system of 
geometric heights allows describing almost all the 
troposphere and, especially, the boundary layer with 
high vertical resolution. 

To assess the accuracy of the Kalman filtering 
algorithm (the results are shown in Fig. 2), station 
Smolensk, spaced by 225 km from the closest 
neighboring station Sukhinichi, was used as a control 
point (to which the spatial extrapolation was carried 
out).  

Analysis of Fig. 2 indicates that the proposed 
algorithm based on the Kalman filtering and the 
four-dimensional dynamic-stochastic model gives 
rather good results as applied to the spatial 
extrapolation of the layer-average values of 
temperature and orthogonal wind components to the 
distance up to 225 km. Actually, at this distance 
regardless of the season and the atmospheric layer, 
the rms errors of extrapolation vary within 0.7–1.6°Ñ 
(for the mean temperature) and 1.0–2.2 m/s (for 
zonal and meridional components of the mean wind). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Map of mesoscale region. 

 
In addition, this algorithm allows extrapolation of 

the wind field in the atmospheric boundary layer, i.e., 
0–1.6 km layer (where, according to Ref. 10, the 
principal transport of industrial pollutants takes 
place) with a rather high accuracy (rms error about 
1.0–2.0 m/s), which is close to the accuracy of wind 
radiosounding, being 0.7–2.0 m/s [Ref. 11]. 

In conclusion, it should be emphasized that the 
method considered can be improved. Toward this 
end, it is necessary to develop an adaptive algorithm, 
which would allow estimating the correlation length 
of a chosen meteorological parameter at every 
observation point and fitting, in the proper way, the 
coefficients cs in the model (1). An individual subject 
of study is also the influence of parameters 
determining the temporal and spatial dependences of 
the meteorological field at the point of forecast on 
the values of this field at the observation points (the 
first and second terms in Eq. (1)). 
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Fig. 2. Vertical profiles of rms errors of extrapolation of the layer-average values of temperature (a), zonal (b) and  
meridional (c) wind components to the distance 225 km with the use of the Kalman filtering algorithm and the four-
dimensional dynamic-stochastic model (1) along with the corresponding standard deviations (2). 
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