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The effective viscosity coefficient of rarefied gas nanosuspensions is calculated by means of 
Boltzmann kinetic theory. The dependence of this coefficient on the radius of nanoparticles, their 
concentration, and temperature of a carrier gas is investigated. It is shown that the viscosity of gas 
nanosuspensions depending on the nanoparticle concentration and size can both increase and decrease 
compared with the viscosity of the carrier gas. The results obtained are compared with the data for 
binary mixtures of rarefied gases. 

 

Introduction 
 

The effective viscosity coefficient of rarefied 

suspensions (liquid + solid disperse particles) was 
calculated for the first time by Albert Einstein, 

1 who 
took into account the influence of particles on the 
hydrodynamic velocity field of the carrier liquid and, 
as a consequence, on the stress tensor and the viscosity 
coefficient. It was shown that the effective viscosity 
coefficient of the suspended matter  

 η = η + ϕ0

5
(1 )

2
  (1) 

is always larger than the viscosity coefficient of the 
carrier liquid η0 (ϕ is the volume concentration of the 
particulate matter). Later on in many papers the 

attempts were made to extend Einstein theory to the 
case of rather dense suspensions (see, for example, 
Refs. 2, 3, and references therein), and the equations 
similar to Eq. (1) were derived accurate to the terms 
on the order of ϕ2. 

In practice, the carrier medium often is a rarefied 
gas. Rarefied gases here are the gases, whose molecules 
interact with each other only through binary collisions. 
Thus, a gas (in particular, air) is rarefied under normal 
conditions. What is the effective viscosity of a rarefied 
gas suspension and how does it depend on the 

concentration of the dispersed matter? Both these 

questions are unanswered yet. Even more interesting 
is the situation with rarefied gas nanosuspensions 
(gas + nanoparticles), in which the disperse component 
is formed by nanoparticles. The rapid development of 
nanotechnologies determines the acute urgency of 
studying the effective viscosity of gas nanosuspensions. 

The aim of this work was to calculate the viscosity 
coefficient of rarefied gas nanosuspensions. The data 
obtained are compared with the theoretical results 
calculated for various molecular mixtures. 

 

Formulation of the problem  
and basic relationships  

 

The problem formulated is very complicated 

because the nanoparticles have the size from one to tens 

of nanometers, which is on the order of or smaller 
than the hydrodynamic physically infinitely small scale 
for the carrier medium under normal conditions. Thus, 
even if the carrier gas can be described by fluid 
dynamics, the latter is inapplicable to description  
of the streamline of a nanoparticle, and the medium, 
on the nanoparticle scale, is not continuous. 
Therefore, kinetic theory should be used to describe 
the processes of nanoparticle transport in gases. As 
shown in Refs. 4 to 6 the dynamics of rarefied gas 

nanosuspensions is described by a system of 
Boltzmann kinetic equations. However, even in this 
case, the interaction of a nanoparticle with a gas 
molecule is collective, because it is necessary to take 
into account its simultaneous interactions with all 
atoms (molecules). This can be achieved by use of a 
specially constructed molecule–particle interaction 
potential 

7,8: 

 Φ = Φ − Φ9 3( ) ( ) ( ),r r r   (2) 
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where 

 = πε σ129 4 /(45 ),ij ijC V  = πε σ63 2 /(3 );ij ijC V   

 =9 9/(8 ),a r  =3 3/(2 );a r  

V is the effective volume per one molecule of a particle; 
εij, σij are the parameters of the Lennard–Jones 6–12 
potential describing the interaction of gas molecules 
with every molecule (atom) of a nanoparticle.  

This potential was used to study the diffusion of 
nanoparticles in rarefied gases within the framework 
of the Boltzmann kinetic theory.8–10 In particular, it 
was shown that the properties of nanoparticle transport 
strongly differ from those of ordinary Brownian 

particles, and their diffusion cannot be described by 
Einstein theory and the Cunningham–Millikan–Davis 
experimental correlation based on it. At the same 
time, kinetic theory with the potential from Refs. 8 
to 10 well agrees with the experimental data both the 
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existing ones and those obtained especially.9,10 No 
reliable interaction potential (in particular, some 

interaction models) between particles of the dispersion 
has been proposed so far. Therefore, in this paper the 
particle–particle interaction is modeled by the 

potential of solid spheres.  
Thus, let us consider a rarefied gas nanosuspension 

as a binary mixture of particles of two sorts: carrier gas 

molecules and nanoparticles. As was already mentioned, 
the dynamics of such a binary disperse system is 

described by the ordinary system of Boltzmann 
equations. As a result, it can be shown that in the first 

approximation of the Sonin's polynomial expansion 
method that the viscosity coefficient of the considered 
rarefied gas nanosuspension is described by the 

equation11: 

 ( ) ( )η = + +1 /Z X Y ,  (3)  

where 
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Here ∗ ∗2 2( , )
m

y b g  is the minimum positive value of ó 

corresponding to vanishing of the integrand; y ≡ R/r 
is the reduced reciprocal distance between the centers 
of the carrier gas molecule and the nanoparticle 
normalized to the nanoparticle radius; Φ* ≡ Φ/εl is 
the reduced potential energy normalized to the value 

proportional to the depth of the potential well; x1 and 

x2 are the mole fractions of the components 1 and 2; 
µ = m1/m2, m1, m2 are the molecular masses of the 
carrier gas and the nanoparticle, respectively (the 
subscript 2 corresponds to nanoparticles, unless 

otherwise specified); m12 = m1m2/(m1 + m2) is the 

reduced mass; * (2,2)* (1,1)*
12 12 12/A = Ω Ω , Ω( , )*

12
l r

 are the 

reduced Ω-integrals; σ22 = 2R, R is the radius of 

nanoparticle; ∗ ≡ ε1 11T kT  is the reduced carrier gas 

temperature equal to the ratio of the gas temperature T 
to the depth of the potential well of the Lennard–Jones 

6–12 potential, ∗ ≡ ε12 lT kT  is the reduced temperature 

of nanoparticle–gas molecule interaction normalized 

to the energy parameter ε = πε σ312 122 10 (9 )l V  

proportional to the depth of the potential well of the 

potential (2); ∗σ ≡ σ12 12 R is the spatial parameter 

proportional to the ratio of the size of the repulsion 

zone to the nanoparticle radius; ∗ ≡b b R is the reduced 

impact parameter for the particle coming from the 

infinity; ∗ ≡ ε2 2

12 12 12 (2 )lg m g  is the reduced kinetic energy 

of the relative motion; ∗ ∗≡ =2 2 2 (2 )ij ij ij ijG g T m g kT  is 

the kinetic energy of the relative motion normalized 
to the carrier gas temperature. 

Boltzmann kinetic theory is applicable to 

description of gas nanosuspensions only in the case, 
when the volume concentrations of particles are low 
enough or, more precisely, when the corresponding 

Van der Waals parameter is small: n2R
3

 << 1 (only in 
this case the approximation of binary collisions of 
nanoparticles with the carrier gas molecules is valid). 
Therefore, it is useful to study the behavior of the 
viscosity coefficient (3) at small values of the mole 
fraction of the disperse phase: x2 << 1. In the first 
approximation with respect to x2, the viscosity 
coefficient (3) takes the form 

 2

1 *

12

1
(1 0.6 )
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  (5)  

(ρ2 is the density of the particulate matter). In that 
case the parameter α has the physical meaning of the 
ratio of the particulate matter density to the density 
of the carrier gas. 

The parameter x2 can be related to the volume 
concentration of nanoparticles ϕ = x2vpp/(kT), where 
vp is the nanoparticle volume; p is the pressure of the 
gas nanosuspension. Then Eq. (4) takes the form 

similar to the Einstein equation (1). However, there is 
an important difference between them: the function (4) 
significantly depends on the mass, µ, and effective 
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diameter, s, ratios between the molecules and 

nanoparticles, temperature, and parameters of the 
potential (2). Generally speaking, the term in the 
square brackets in Eq. (4) can alternate the sign at 
certain values of the above parameters. This means that 
when small volume concentrations of solid particles are 
added to the pure gas, the effective viscosity of the 
medium can both increase and decrease. 

In particular, the derivative of the effective viscosity 

of the gas nanosuspension (4) with respect to the 

volume concentration of disperse particles is equal to 
 

 

* 3
12 11
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d 6
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2
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 ΩΩ
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(6)

 

The values of the Ω-integrals in this equation depend 
on the temperature and the parameters of the 
interaction potential for large particles on the order 
of unity increase with the decrease of the nanoparticle 

radius. Thus, for example, the function 
(2,2)*
12Ω  varies 

from unity to about 4.5 for different particles. As the 
radius of the disperse particles increases and, 
correspondingly, the parameter s decreases, the 
absolute values of all the terms in the square brackets 
decrease. Consequently, the addition to the effective 
coefficient of the gas nanosuspension caused by the 
presence of nanoparticles decreases as well. If the 
parameter s is small, then the density ratio α (5) of the 
particulate matter and the carrier gas molecules 

becomes significant. Thus, the decrease of the effective 
viscosity coefficient as compared with the coefficient 

η1 should be expected at the strong difference between 

the sizes of the carrier gas molecules and the 

nanoparticles, when the last term in Eq. (6) turns out 
to be predominant. If the size of nanoparticles is small 
enough, then the decrease of the effective viscosity 
coefficient should be expected in the gas nano- 
suspensions with the relatively small parameter α. 
Certainly, here we should take into account the values 
of the Ω-integrals, which can change by 2 to 3 times. 

Finally, note that for the binary mixture of 
gases with the strongly different molecular masses, 
when usually σ11 ∼ σ22  and µ << 1 , from Eq. (3) we 

obtain the following equation: 

 
2 (2,2)*

11
1 2 2(1,1)*

12

1 1.2 2 ( ) .
s

x O x
 Ω

η = η + + 
µ Ω  

  (7) 

The second term in the square brackets is on the order 
of µ–1x2, while the third one, O(x2), is on the order 
of x2, and at µ << 1, x2 << 1 the third term O(x2) is 
much smaller than the second one in the square 
brackets. From Eq. (7) it follows that small addition 

of a much heavier gas to the light one always leads to 
the increase in the effective viscosity of the mixture 
as compared to the viscosity of the light component 
alone, which agrees with Eq. (1). 

Calculation of viscosity coefficients  
of rarefied gas nanosuspensions  
 
The transport coefficients obtained using kinetic 

theory are governed by the values of the Ω-integrals. 

The integrals Ω (1,1)*
12 (C3, C9, R, T) have been studied in 

analyzing diffusion of nanoparticles in a rarefied gas.8 
The calculations performed for a wide range of binary 
gas nanosuspensions have shown that all the Ω-
integrals for potential (2) (unlike the corresponding 
parameters for the rarefied gas) weakly depend on 
the use of various combination relations and widely 
different data on the parameters of intermolecular 
potentials. At the same time, their values are rather 
sensitive to variations of the nanoparticle radii, and 
for almost all pairs of molecules studied they are close 

to unity (different but no more than 5%) starting 
from the particle radii greater than 10 nm. On the 
other hand, for particles with the radii smaller than 
10 nm, the Ω-integrals change monotonically in the 
range of 1.5–3.5, and the greater is the constant Ñ3, 
the larger is this change [see Eq. (2)]. 

The behavior of the function Ω (2,2)*
12 (C3, C9, R, T) 

that enters the Eqs. (3)–(6) for the viscosity coefficient 
was studied by calculating these Ω-integrals for 
rarefied gas nanosuspensions. The calculations have 
been carried out for particles of Zn, Cd, and Cu2O in 
Ne, Zn, Cu2O in Ar, and U in H2. The particle radii 
varied from 0.5 to 100 nm. The parameters of the 
interaction potential (2) of these gas suspensions are 
presented in Table 1; the constants Ñ3 and Ñ9 were 
determined using the data from different sources 
summarized in Table 2. In all the cases, the results 
obtained coincide qualitatively with those described 

above for the integrals Ω (1,1)*
12 . 

 

Table 2. Parameters of nanoparticle–molecule  
interaction potential 

Matter C3, K⋅Å3 C3, K⋅Å9 σij, Å εij/k, K 
Cd–Ne 7.760 ⋅ 103 3.901 ⋅ 105 2.688 212.1 
Zn–Ne 8.664 ⋅ 103 3.775 ⋅ 105 2.624 192.7 
Cu2O–Ne 2.667 ⋅ 104 5.473 ⋅ 106 3.398 322.3 
Zn–Ar 2.835 ⋅ 104 2.501 ⋅ 106 2.952 311.5 
U–H2 2.957 ⋅ 104 3.852 ⋅ 106 3.150 300.1 
Cu2O–Ar 9.041 ⋅ 104 3.375 ⋅ 107 3.754 600.6 

Table 2. Parameters of the Lennard–Jones  
6–12 potential 

Matter εij/k, K  σij, Å  

U 2703.6 3.343 (Ref. 12)
Zn 1040 2.460 (Ref. 12)
Cd 1260 2.580 (Ref. 12)

Cu2O 2909.1 4.124 (Ref. 9) 
Ne 35.7 2.789 (Ref. 11)
Ar 124.0 3.418 (Ref. 11)
Xe 229.0 4.055 (Ref. 11)
UF6 236.8 5.967 (Ref. 13)
H2 33.3 2.968 (Ref. 11)

 

As has already been mentioned above when 

nanoparticles are added to a gas at small volume 
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concentrations the effective viscosity of the medium 
can both increase and decrease depending on the 
properties of the particulate matter, as well as on the 
nanoparticle radius and on the kind of the carrier gas. 
As an example, Fig. 1 depicts the derivative of the 
effective viscosity (6) with respect to the volume 

concentration of disperse particles normalized to the 
pure gas viscosity η′  = η–1(dη/dϕ) as a function of the 

nanoparticle radius for the U–H2 gas nanosuspension 
(uranium particles of the radius R in hydrogen). The 
derivative η′  actually alternates the sign nearby R = 
= 36 nm. Thus, this gas nanosuspension with particles 

of a large radius will have the effective viscosity lower 

than the viscosity of the carrier gas. On the other 

hand, the viscosity of the gas nanosuspension U–H2 
with small particles turns out higher than the viscosity 
of the carrier gas. 

 

 
Fig. 1. Derivative η′  of the viscosity coefficient of the gas 
suspension U–H2 with respect to the volume concentration 
of particles as a function of the particle radius. T = 300 K. 
 

The decrease of the effective viscosity coefficient 
relative to the viscosity coefficient of the pure gas can 
be expected, as was mentioned above, at the relatively 
small values of the parameter α (5). The values of 
this parameter for some gas suspensions studied are 
presented in Table 3. The gas suspension U–H2 has 
the maximum value of this parameter. For the 

suspension Zn–Ne (zinc particles in neon), to the 
contrary, the parameter α (5) is much smaller than for 
U–H2. As a result, when the zinc particles of small 
radius are added to the gas, the effective viscosity of 
the gas nanosuspension Zn–Ne decreases. This is 
illustrated by data presented in Fig. 2, which shows 

the dependence of η′  on the radius of zinc particles. 
With the increase of the radius of the disperse particles, 
the absolute value of the function η′  decreases. Thus, 
the addition of rather large nanoparticles (R > 30 nm) 

practically does not change the viscosity coefficient of 
the gas suspension as compared with the viscosity of 
the pure neon. Certainly, it should be kept in mind 
that the linear approximation (6) is applicable only at 

low concentrations. 
 

Table 3. Values of the density ratio αααα (5) 

Gas suspension α  
Cd–Ne 2.932 
Zn–Ne 2.418 

Cu2O–Ne 2.068 
Zn–Ar 2.248 
U–H2 77.864 

Cu2O–Ne 1.923 

 
Fig. 2. Derivative η′  of the viscosity coefficient of the gas 
suspension Zn–Ne with respect to the volume concentration 
of particles as a function of the particle radius. T = 300 K. 
 

It should be emphasized that in all cases the 
derivative (6) has the highest values for particles of 
small radii (R < 2 nm), and just in this region it 
changed most strongly. This means that even low 
concentrations of ultrafine particles can significantly 
change the viscosity of the carrier gas. As an 
example, Fig. 3 shows the dependence of the effective 
viscosity coefficient (3) of the gas nanosuspension 
U–H2 on the volume concentration of particles of the 
radius R = 0.5 nm at different temperatures. Here 
curve 1 corresponds to the temperature of 200 K; 2 – 
300; 3 – 400; 4 – 500; 5 – 600; 6 – 800; and 7 – 
1000 K. The dependence of the effective viscosity 
coefficient of this gas nanosuspension on the volume 
concentration of disperse particles has one peak. As the 
temperature increases, the height of this peak grows 
and it shifts toward lower concentrations. At all the 
temperatures, the relatively small addition of uranium 
particles causes the increase of the viscosity coefficient 
of the gas nanosuspension as compared to that of the 
pure gas. At the concentrations of about 2 ⋅ 10–4 and 
at room temperature, the viscosity of the gas 
nanosuspension exceeds the viscosity of the carrier 
gas roughly by 90%. This effect significantly depends 
on the temperature and at T = 1000 K the ratio η/η1 
is approximately equal to 2.3, the concentrations 
being the same. 

 

 
Fig. 3. Effective viscosity coefficient (in poise) of the gas 
nanosuspension U–H2 (R = 0.5 nm) as a function of the 
volume concentration of particles. 

As has already been mentioned above, the addition 
of large uranium particles should result in a decrease 
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of the viscosity coefficient of the gas suspension  
as compared with the viscosity coefficient of pure 

hydrogen. This effect is really observed. The 

corresponding example can be found in Ref. 14 for 
the same gas suspension. For uranium particles of the 
radius R = 70 nm at T = 300 K the effective viscosity 
coefficient of the gas nanosuspension turns out to be 
1% lower than the hydrogen viscosity coefficient at 
the uranium particle concentration of 2 ⋅ 10–3. This 
effect increases with the temperature growth.  

According to Fig. 2, the viscosity coefficient  
of the gas suspension Zn–Ne proves to be lower that 
the viscosity coefficient of pure neon. Actually, as 
was shown in Ref. 14, the viscosity of the gas 

nanosuspension at any temperature is lower than that 
of the carrier gas. At the room temperature and the 
volume particle concentration of 2 ⋅ 10–4, the effective 
viscosity of this gas suspension is approximately 15% 
lower than the viscosity of pure neon, and this effect 
increases with the temperature growth. 

 

Discussion 
 

The main conclusion that can be drawn from  
the results obtained is that the viscosity of gas 

nanosuspensions, unlike the viscosity of coarse 
suspensions, can be both higher and lower than that 
of the carrier gas. The increase or decrease of the 
viscosity of the gas nanosuspension as compared with 
the viscosity of the pure gas depends mainly on the 
radius of nanoparticles and the parameter α (5), which 
is the density ratio of the particulate matter and the 
carrier gas. With the decrease of the nanoparticle 
radius, the effect of the change (increase or decrease) 
of the viscosity coefficient of the gas nanosuspension 
significantly increases in all cases. The growth of the 
suspension temperature also significantly intensifies 
this effect. 

It is useful to compare the viscosity properties of 
gas nanosuspensions with the viscosity of binary 
mixtures of gases. However, it should be noted that 
the behavior of the effective viscosity coefficient of 
the binary mixture of gases in the general case is 
poorly studied even for the rarefied gases, though in 
this case kinetic theory allows the calculation to be, 
in principle, performed with quite a high accuracy. 
The viscosity of the binary mixture almost never is a 
linear function of the composition. Two typical 
situations are possible. In the first case the viscosity 
of the mixture increases monotonically with the 

increase of the mole fraction of one of the components, 
and in the second case it has a peak at some 

composition, and the amplitude of this peak is higher 
than the viscosity of any of the components. 

13 The 
physical causes for such a behavior of the mixture 
viscosity are not fully clear. However, if the molecular 
masses of the components of the binary mixture differ 
widely, then the viscosity of the mixture in the linear 
approximation in terms of the molar concentration of 
the heavier component increases according to Eq. (7).  

To describe the behavior of the viscosity of binary 
mixtures of rarefied gases with widely different 

molecular masses at arbitrary concentrations, the 
viscosities of the mixtures Xe–Ne and UF6–Ne have 
been calculated. The intermolecular interaction was 
described by the Lennard–Jones potential with the 
constants presented in Table 2. The qualitative 

behavior of both mixtures is similar. Figure 4 shows 
the dependence of the viscosity of the mixture UF6–
Ne on the molecular concentration of the heavier 
component (here curves 1–7 correspond to the same 
temperatures as in Fig. 3). It is natural that at low 
concentrations of the heavier gas the viscosity of the 
mixture behaves in accordance with Eq. (7). However, 
at high concentrations the dependence of the viscosity 
on the composition becomes nonlinear and has a peak, 
whose position significantly depends on the temperature 

of the mixture. As the temperature increases, the mole 
fraction of the heavier gas x2 corresponding to the 
maximum value of the effective viscosity coefficient of 
the mixture at this temperature increases monotonically, 
and the amplitude of the peak increases as well. The 
viscosity coefficients of pure Xe and UF6 are lower 
than that of pure Ne, therefore the effective viscosity 

coefficient of the mixtures of the rarefied gases studied 

has single maximum. 
 

 
Fig. 4. Viscosity coefficient (in poise) of the mixture of Ne 
and UF6 gases as a function of the mole fraction of UF6. 
 

It should be noted that at high concentrations of 
the heavier component the viscosity of the mixture 
becomes lower than that of the light gas, but, unlike 
the gas suspension, this is observed at high molar 
concentrations of the heavier component, for 
example, for the mixture UF6–Ne at the UF6 molar 
concentration of about 7–10%. 

It should be emphasized once again that always 
the viscosity of the mixture of gases, in particular, 
with the widely different masses first increases upon 
addition of the heavier component. Thus, the 

mechanism of momentum transfer operates in gas 
nanosuspensions, while in gases it can be neglected. 
To understand the nature of the transfer mechanisms, 
it is useful to apply kinetic theory of viscosity. It can 
be shown (see, for example, Ref. 15), that within the 
framework of elementary kinetic theory the effective 
viscosity coefficient of the rarefied gas nanosuspension 
ηe is described by the following equation: 
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where k = l22/l21 and l22 is the mean free path of the 
heavy particle (subscript 2) with respect to particles 
of the kind 2; l21 is the mean free path of the heavy 
particle with respect to molecules (particles with the 
subscript 1). Simple estimates show that  
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where c1, c2 are the thermal velocities of the molecules 
and particles, respectively. 

For all the considered gas nanosuspensions, there 
is the value of k, at which Eq. (8) yields, in the 
entire temperature range considered, the dependences 
of the viscosity coefficients of gas suspensions on the 
molar and mass concentrations almost coinciding 
with the exact calculation by Eq. (3). The expansion 
of Eq. (8) into a series over small x2 parameter 
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 σ ση = + − πσ σ σ 
 (9) 

shows the physical meaning of two main terms of the 
expansion in the square brackets in Eqs. (4) and (6). 
The first, positive, term is associated with the 
increase of the viscosity due to momentum transfer by 
nanoparticles. The negative term is caused by the 
decrease in the frequency of molecule–molecule 

collisions owing to the collisions of molecules with 
nanoparticles, as well as owing to the decrease of the 
mole fraction of the gas molecules. For gases with 
strongly different molecular masses, σ11 ∼  σ12 and the 
second term in Eq. (9) can be neglected as compared 
with the positive term, and thus we obtain the equation 
of the form (7). 

The influence of the parameter α (5) on the 

viscosity of the gas suspension is physically clear. To 
provide for the transfer of the same momentum, 
particles of the higher density should have smaller 
radii and, consequently, the longer mean free paths. 
That is why the effective viscosity coefficient of the 
gas  nanosuspension  increases  with  the growth of α. 

In conclusion, it should be noted that in this paper 

the potential of solid spheres was used to calculate the  
 

interaction. For particles of the dispersion, this 

potential is far from realistic in the general case. 
However, this has almost no effect on the results and 
conclusions drawn in this paper, because at low volume 
concentrations of the disperse phase the contribution 
of the particle–particle interaction to the effective 
viscosity coefficient is negligibly small. 
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